-
Notifications
You must be signed in to change notification settings - Fork 38
feat: missing upstream passes + rocm jll #1835
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
8534d09 to
54f5156
Compare
89eebc4 to
3957f65
Compare
Collaborator
Author
|
Contributor
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Reactant.jl Benchmarks
| Benchmark suite | Current: 5c0e420 | Previous: 86bea8f | Ratio |
|---|---|---|---|
DeepONet ([64, 1024], [1, 128])/forward/CPU/Default |
0.0025954100000000003 s |
0.0025712 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/forward/CPU/DisableScatterGatherPad |
0.002437588 s |
0.002324076 s |
1.05 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisablePadAfterEnzyme |
0.0061261760000000005 s |
0.005635531 s |
1.09 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DefaultAfterEnzyme |
0.0060800870000000005 s |
0.005918332 s |
1.03 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableScatterGatherPadBeforeEnzyme |
0.006573224000000001 s |
0.005868992 s |
1.12 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableScatterGatherPadAll |
0.0062186920000000005 s |
0.005969917000000001 s |
1.04 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisablePadBeforeEnzyme |
0.006500447 s |
0.005719778 s |
1.14 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisablePadAll |
0.006505485 s |
0.005898044000000001 s |
1.10 |
DeepONet ([64, 1024], [1, 128])/forward/CPU/DisableScatterGather |
0.002540848 s |
0.002515556 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DefaultAll |
0.006662922000000001 s |
0.005925306 s |
1.12 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableTransposeReshapeAfterEnzyme |
0.006241464 s |
0.005697300000000001 s |
1.10 |
DeepONet ([64, 1024], [1, 128])/forward/CPU/XLA |
0.002386434 s |
0.002469012 s |
0.97 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/XLA |
0.006137005 s |
0.005527595000000001 s |
1.11 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableScatterGatherAfterEnzyme |
0.006352184 s |
0.0058676050000000006 s |
1.08 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DefaultBeforeEnzyme |
0.006712335000000001 s |
0.006050863 s |
1.11 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableTransposeReshapeBeforeEnzyme |
0.006531435 s |
0.0056281510000000005 s |
1.16 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableScatterGatherPadAfterEnzyme |
0.006324708 s |
0.005697946000000001 s |
1.11 |
DeepONet ([64, 1024], [1, 128])/forward/CPU/DisablePad |
0.0023203720000000002 s |
0.002477824 s |
0.94 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableTransposeReshapeAll |
0.0065091310000000005 s |
0.0059030440000000005 s |
1.10 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableScatterGatherAll |
0.006718002000000001 s |
0.005717776 s |
1.17 |
DeepONet ([64, 1024], [1, 128])/forward/CPU/DisableTransposeReshape |
0.002258277 s |
0.002280626 s |
0.99 |
DeepONet ([64, 1024], [1, 128])/backward/CPU/DisableScatterGatherBeforeEnzyme |
0.006824253000000001 s |
0.005962824 s |
1.14 |
VGG11 bn=true [224, 224, 3, 4]/forward/CUDA/DisablePad |
0.002061516 s |
0.0020651890000000003 s |
1.00 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableScatterGatherAll |
0.000681872 s |
0.0006401400000000001 s |
1.07 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/XLA |
0.0008448790000000001 s |
0.00077032 s |
1.10 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableTransposeReshapeAll |
0.0071811900000000005 s |
0.007178500000000001 s |
1.00 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DefaultBeforeEnzyme |
0.000723888 s |
0.0006608050000000001 s |
1.10 |
FNO [64, 64, 1, 4]/backward/CUDA/DefaultAll |
0.002950161 s |
0.002965329 s |
0.99 |
VGG11 bn=true [224, 224, 3, 4]/forward/CUDA/DisableScatterGatherPad |
0.0020558910000000002 s |
0.002049345 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableTransposeReshapeBeforeEnzyme |
0.007321437 s |
0.007293340000000001 s |
1.00 |
FNO [64, 64, 1, 4]/backward/CUDA/DefaultBeforeEnzyme |
0.0030004180000000004 s |
0.0029945640000000003 s |
1.00 |
DeepONet ([64, 1024], [1, 128])/forward/CUDA/XLA |
0.00031256400000000004 s |
0.000336395 s |
0.93 |
FNO [64, 64, 1, 4]/backward/CUDA/DisablePadBeforeEnzyme |
0.0029962170000000002 s |
0.0029657420000000004 s |
1.01 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableScatterGatherPadAll |
0.0029803940000000004 s |
0.002952564 s |
1.01 |
FNO [64, 64, 1, 4]/forward/CUDA/DisablePad |
0.0010878700000000001 s |
0.001090559 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisablePadBeforeEnzyme |
0.0072776360000000005 s |
0.007267997000000001 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableScatterGatherPadBeforeEnzyme |
0.007264527000000001 s |
0.007312644 s |
0.99 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableScatterGatherAfterEnzyme |
0.0072111020000000005 s |
0.007179213 s |
1.00 |
FNO [64, 64, 1, 4]/forward/CUDA/DisableScatterGatherPad |
0.0011089840000000001 s |
0.0011024140000000001 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisablePadAll |
0.000673258 s |
0.000638042 s |
1.06 |
DeepONet ([64, 1024], [1, 128])/forward/CUDA/DisableTransposeReshape |
0.00031367300000000004 s |
0.000327728 s |
0.96 |
ViT tiny [256, 256, 3, 4]/forward/CUDA/DisableScatterGatherPad |
0.003182831 s |
0.003228463 s |
0.99 |
ViT tiny [256, 256, 3, 4]/forward/CUDA/DisableScatterGather |
0.00318327 s |
0.003220179 s |
0.99 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DefaultAfterEnzyme |
0.0006913970000000001 s |
0.000640295 s |
1.08 |
ViT tiny [256, 256, 3, 4]/backward/CUDA/XLA |
0.012773682000000001 s |
0.012791198 s |
1.00 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableScatterGatherAfterEnzyme |
0.0029783210000000004 s |
0.00293947 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DefaultAfterEnzyme |
0.007224273000000001 s |
0.00718253 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/forward/CUDA/DisableScatterGather |
0.000333484 s |
0.00033621400000000004 s |
0.99 |
FNO [64, 64, 1, 4]/forward/CUDA/DisableTransposeReshape |
0.0011543970000000001 s |
0.001141049 s |
1.01 |
FNO [64, 64, 1, 4]/backward/CUDA/DisablePadAll |
0.002943588 s |
0.0029775910000000004 s |
0.99 |
ViT tiny [256, 256, 3, 4]/forward/CUDA/XLA |
0.0033760450000000003 s |
0.0033792590000000003 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableScatterGatherBeforeEnzyme |
0.007264314000000001 s |
0.007278332 s |
1.00 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableTransposeReshapeAll |
0.003091926 s |
0.003099075 s |
1.00 |
ViT tiny [256, 256, 3, 4]/forward/CUDA/DisableTransposeReshape |
0.0031534320000000003 s |
0.0031934570000000002 s |
0.99 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisablePadAll |
0.007177297 s |
0.007183577 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableScatterGatherPadAfterEnzyme |
0.007203689 s |
0.007147457 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/forward/CUDA/DisablePad |
0.00033595 s |
0.00032739 s |
1.03 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableTransposeReshapeBeforeEnzyme |
0.003147958 s |
0.003182325 s |
0.99 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableScatterGatherAfterEnzyme |
0.000693495 s |
0.000633988 s |
1.09 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableTransposeReshapeAfterEnzyme |
0.000693858 s |
0.000636892 s |
1.09 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableScatterGatherPadAll |
0.007206718000000001 s |
0.007160163000000001 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableTransposeReshapeBeforeEnzyme |
0.000703526 s |
0.000657869 s |
1.07 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DefaultAll |
0.007191877 s |
0.007158685000000001 s |
1.00 |
FNO [64, 64, 1, 4]/backward/CUDA/XLA |
0.003143158 s |
0.0031169690000000002 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/XLA |
0.007344024 s |
0.007315152 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/forward/CUDA/DisableTransposeReshape |
0.0020697560000000003 s |
0.0020601950000000003 s |
1.00 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableTransposeReshapeAfterEnzyme |
0.0031044510000000003 s |
0.0030792920000000004 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DefaultAll |
0.0006853240000000001 s |
0.000633231 s |
1.08 |
FNO [64, 64, 1, 4]/backward/CUDA/DisablePadAfterEnzyme |
0.00296546 s |
0.002967267 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableScatterGatherAll |
0.007198156000000001 s |
0.007147589 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableScatterGatherPadAfterEnzyme |
0.0007014590000000001 s |
0.000627795 s |
1.12 |
FNO [64, 64, 1, 4]/forward/CUDA/XLA |
0.0011913240000000001 s |
0.0011958930000000002 s |
1.00 |
ViT tiny [256, 256, 3, 4]/forward/CUDA/DisablePad |
0.0024830290000000003 s |
0.0025319170000000003 s |
0.98 |
VGG11 bn=true [224, 224, 3, 4]/forward/CUDA/XLA |
0.0021179050000000002 s |
0.0020984610000000002 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisablePadAfterEnzyme |
0.007167492 s |
0.007189999000000001 s |
1.00 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableScatterGatherBeforeEnzyme |
0.0029995390000000003 s |
0.0029903250000000003 s |
1.00 |
ViT tiny [256, 256, 3, 4]/forward/CUDA/Default |
0.0025233010000000004 s |
0.002571082 s |
0.98 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableScatterGatherBeforeEnzyme |
0.000728298 s |
0.0006573600000000001 s |
1.11 |
FNO [64, 64, 1, 4]/forward/CUDA/DisableScatterGather |
0.001091299 s |
0.001087157 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DisableTransposeReshapeAfterEnzyme |
0.0072032070000000005 s |
0.007163539 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisablePadAfterEnzyme |
0.0006943720000000001 s |
0.00063382 s |
1.10 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableScatterGatherPadAll |
0.0006786380000000001 s |
0.000629372 s |
1.08 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableScatterGatherAll |
0.002980724 s |
0.002952361 s |
1.01 |
FNO [64, 64, 1, 4]/backward/CUDA/DefaultAfterEnzyme |
0.00296261 s |
0.002947505 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableTransposeReshapeAll |
0.000671019 s |
0.0006293890000000001 s |
1.07 |
VGG11 bn=true [224, 224, 3, 4]/forward/CUDA/Default |
0.002057349 s |
0.0020647 s |
1.00 |
FNO [64, 64, 1, 4]/forward/CUDA/Default |
0.001092981 s |
0.001090569 s |
1.00 |
DeepONet ([64, 1024], [1, 128])/forward/CUDA/DisableScatterGatherPad |
0.00033048400000000003 s |
0.00033845200000000005 s |
0.98 |
VGG11 bn=true [224, 224, 3, 4]/forward/CUDA/DisableScatterGather |
0.002059403 s |
0.002057487 s |
1.00 |
ViT tiny [256, 256, 3, 4]/backward/CUDA/DefaultAll |
0.010719085000000001 s |
0.010060634 s |
1.07 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisablePadBeforeEnzyme |
0.0007196020000000001 s |
0.000660656 s |
1.09 |
DeepONet ([64, 1024], [1, 128])/forward/CUDA/Default |
0.00036012200000000005 s |
0.000325973 s |
1.10 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableScatterGatherPadAfterEnzyme |
0.002972118 s |
0.002937775 s |
1.01 |
FNO [64, 64, 1, 4]/backward/CUDA/DisableScatterGatherPadBeforeEnzyme |
0.0030055090000000004 s |
0.00300421 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/CUDA/DefaultBeforeEnzyme |
0.007263103000000001 s |
0.00727585 s |
1.00 |
DeepONet ([64, 1024], [1, 128])/backward/CUDA/DisableScatterGatherPadBeforeEnzyme |
0.0007218530000000001 s |
0.0006709270000000001 s |
1.08 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableScatterGatherPadAfterEnzyme |
0.00473415 s |
0.004669587 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/forward/TPU/DisablePad |
0.0013366600000000001 s |
0.0013345890000000002 s |
1.00 |
FNO [64, 64, 1, 4]/backward/TPU/DisableScatterGatherPadAll |
0.00309228 s |
0.003075178 s |
1.01 |
ViT tiny [256, 256, 3, 4]/backward/TPU/XLA |
0.0029770900000000004 s |
0.002936268 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisablePadBeforeEnzyme |
0.00042125 s |
0.00037486 s |
1.12 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableTransposeReshapeAfterEnzyme |
0.00044268000000000004 s |
0.00037656 s |
1.18 |
FNO [64, 64, 1, 4]/backward/TPU/DisableScatterGatherAfterEnzyme |
0.00298488 s |
0.0029474090000000002 s |
1.01 |
FNO [64, 64, 1, 4]/backward/TPU/DefaultAll |
0.00312167 s |
0.0030703880000000003 s |
1.02 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableScatterGatherPadAll |
0.00470935 s |
0.004676248 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableScatterGatherPadBeforeEnzyme |
0.00040558 s |
0.0003824 s |
1.06 |
DeepONet ([64, 1024], [1, 128])/forward/TPU/Default |
0.00022179 s |
0.00021546 s |
1.03 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisablePadBeforeEnzyme |
0.004680011 s |
0.004667517 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/forward/TPU/DisableScatterGatherPad |
0.00133468 s |
0.001338529 s |
1.00 |
FNO [64, 64, 1, 4]/backward/TPU/DisableTransposeReshapeAfterEnzyme |
0.0030680900000000003 s |
0.0030494880000000004 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableScatterGatherBeforeEnzyme |
0.00042187 s |
0.000373901 s |
1.13 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableScatterGatherAfterEnzyme |
0.00042842000000000005 s |
0.00037397 s |
1.15 |
ViT tiny [256, 256, 3, 4]/forward/TPU/DisableScatterGatherPad |
0.00064167 s |
0.00061719 s |
1.04 |
FNO [64, 64, 1, 4]/backward/TPU/DisableTransposeReshapeAll |
0.0030922600000000003 s |
0.003057929 s |
1.01 |
FNO [64, 64, 1, 4]/backward/TPU/DisableTransposeReshapeBeforeEnzyme |
0.0030817600000000002 s |
0.0030527590000000004 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DefaultAfterEnzyme |
0.00469695 s |
0.004695808 s |
1.00 |
FNO [64, 64, 1, 4]/forward/TPU/DisableScatterGather |
0.0011458500000000001 s |
0.00112548 s |
1.02 |
FNO [64, 64, 1, 4]/backward/TPU/DisablePadBeforeEnzyme |
0.00310324 s |
0.0030808190000000003 s |
1.01 |
ViT tiny [256, 256, 3, 4]/forward/TPU/XLA |
0.0010661400000000001 s |
0.0010192 s |
1.05 |
ViT tiny [256, 256, 3, 4]/backward/TPU/DefaultAll |
0.00270512 s |
0.002634731 s |
1.03 |
VGG11 bn=true [224, 224, 3, 4]/forward/TPU/Default |
0.0013384 s |
0.001330129 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/forward/TPU/DisableScatterGatherPad |
0.00022026 s |
0.00020765 s |
1.06 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DefaultAll |
0.00043421000000000003 s |
0.00038853000000000005 s |
1.12 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DefaultAll |
0.00471267 s |
0.004703418 s |
1.00 |
DeepONet ([64, 1024], [1, 128])/forward/TPU/DisableScatterGather |
0.00022008000000000002 s |
0.00020499 s |
1.07 |
VGG11 bn=true [224, 224, 3, 4]/forward/TPU/DisableTransposeReshape |
0.0013272800000000001 s |
0.00132477 s |
1.00 |
FNO [64, 64, 1, 4]/backward/TPU/DisableScatterGatherPadBeforeEnzyme |
0.00309784 s |
0.003067039 s |
1.01 |
ViT tiny [256, 256, 3, 4]/forward/TPU/DisablePad |
0.00063864 s |
0.00062201 s |
1.03 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DefaultBeforeEnzyme |
0.00043794000000000005 s |
0.00038045 s |
1.15 |
DeepONet ([64, 1024], [1, 128])/forward/TPU/DisablePad |
0.00022827 s |
0.00020732000000000001 s |
1.10 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/XLA |
0.00044505 s |
0.00040402000000000005 s |
1.10 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableTransposeReshapeAll |
0.004688240000000001 s |
0.004686738 s |
1.00 |
FNO [64, 64, 1, 4]/backward/TPU/DisableScatterGatherAll |
0.0030929 s |
0.0030645890000000004 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableScatterGatherPadAll |
0.00042651 s |
0.00037855 s |
1.13 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableTransposeReshapeBeforeEnzyme |
0.00468671 s |
0.004717398 s |
0.99 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableTransposeReshapeAfterEnzyme |
0.004701980000000001 s |
0.004687918 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableScatterGatherAll |
0.00468292 s |
0.004671738 s |
1.00 |
FNO [64, 64, 1, 4]/backward/TPU/DisablePadAfterEnzyme |
0.002972789 s |
0.002954079 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableScatterGatherBeforeEnzyme |
0.004689540000000001 s |
0.004683747 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableScatterGatherAfterEnzyme |
0.00468294 s |
0.004671217 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/forward/TPU/XLA |
0.0012603100000000002 s |
0.001246609 s |
1.01 |
ViT tiny [256, 256, 3, 4]/forward/TPU/DisableTransposeReshape |
0.00065216 s |
0.0006304500000000001 s |
1.03 |
ViT tiny [256, 256, 3, 4]/forward/TPU/Default |
0.0006506600000000001 s |
0.000614759 s |
1.06 |
FNO [64, 64, 1, 4]/backward/TPU/DefaultBeforeEnzyme |
0.0031083400000000002 s |
0.0030579690000000002 s |
1.02 |
FNO [64, 64, 1, 4]/forward/TPU/Default |
0.0011460600000000002 s |
0.00112333 s |
1.02 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/XLA |
0.004660790000000001 s |
0.004592738 s |
1.01 |
FNO [64, 64, 1, 4]/forward/TPU/XLA |
0.00143676 s |
0.00139945 s |
1.03 |
DeepONet ([64, 1024], [1, 128])/forward/TPU/DisableTransposeReshape |
0.00022103000000000002 s |
0.00021055000000000002 s |
1.05 |
FNO [64, 64, 1, 4]/backward/TPU/DisablePadAll |
0.003114471 s |
0.003073998 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/forward/TPU/XLA |
0.00035083 s |
0.00029197 s |
1.20 |
FNO [64, 64, 1, 4]/forward/TPU/DisableScatterGatherPad |
0.00114089 s |
0.0011228800000000001 s |
1.02 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisablePadAfterEnzyme |
0.00471536 s |
0.004685428 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DefaultAfterEnzyme |
0.00042574 s |
0.00037276100000000004 s |
1.14 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisablePadAll |
0.00469793 s |
0.004692018 s |
1.00 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DefaultBeforeEnzyme |
0.00471606 s |
0.004682218 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/forward/TPU/DisableScatterGather |
0.0013440400000000001 s |
0.00132944 s |
1.01 |
ViT tiny [256, 256, 3, 4]/forward/TPU/DisableScatterGather |
0.0006433200000000001 s |
0.0006145500000000001 s |
1.05 |
FNO [64, 64, 1, 4]/backward/TPU/DisableScatterGatherBeforeEnzyme |
0.00310552 s |
0.0030752590000000003 s |
1.01 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableTransposeReshapeBeforeEnzyme |
0.00041875 s |
0.00037988000000000003 s |
1.10 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableScatterGatherPadAfterEnzyme |
0.00040824000000000004 s |
0.00037752 s |
1.08 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisablePadAll |
0.00042529000000000004 s |
0.00038125 s |
1.12 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableScatterGatherAll |
0.00042008000000000003 s |
0.00037955000000000004 s |
1.11 |
FNO [64, 64, 1, 4]/forward/TPU/DisableTransposeReshape |
0.00117537 s |
0.00115818 s |
1.01 |
FNO [64, 64, 1, 4]/backward/TPU/DefaultAfterEnzyme |
0.00298409 s |
0.002962269 s |
1.01 |
FNO [64, 64, 1, 4]/backward/TPU/DisableScatterGatherPadAfterEnzyme |
0.0029757810000000003 s |
0.0029555590000000004 s |
1.01 |
VGG11 bn=true [224, 224, 3, 4]/backward/TPU/DisableScatterGatherPadBeforeEnzyme |
0.0047024400000000004 s |
0.004668627000000001 s |
1.01 |
FNO [64, 64, 1, 4]/forward/TPU/DisablePad |
0.00113947 s |
0.00112242 s |
1.02 |
FNO [64, 64, 1, 4]/backward/TPU/XLA |
0.00331291 s |
0.0032443090000000003 s |
1.02 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisableTransposeReshapeAll |
0.00041836 s |
0.00036277 s |
1.15 |
DeepONet ([64, 1024], [1, 128])/backward/TPU/DisablePadAfterEnzyme |
0.00042050000000000003 s |
0.0003813 s |
1.10 |
This comment was automatically generated by workflow using github-action-benchmark.
7fee732 to
50f6e79
Compare
avik-pal
commented
Nov 9, 2025
Collaborator
Author
|
https://github.com/EnzymeAD/Reactant.jl/actions/runs/19214211473/job/54921046081?pr=1835#step:20:843 |
Collaborator
Author
#loc = loc(unknown)
module @reactant_gradien... attributes {mhlo.num_partitions = 1 : i64, mhlo.num_replicas = 1 : i64} {
func.func @main(%arg0: tensor<12x16x4xf32> loc(unknown), %arg1: tensor<4x4xf32> loc(unknown), %arg2: tensor<4x4xf32> loc(unknown), %arg3: tensor<4xf32> loc(unknown), %arg4: tensor<4xf32> loc(unknown), %arg5: tensor<2xui64> loc(unknown)) -> (tensor<f32>, tensor<4x4xf32>, tensor<4x4xf32>, tensor<4xf32>, tensor<4xf32>) {
%cst = stablehlo.constant dense<2.000000e+00> : tensor<4x12xf32> loc(#loc)
%c = stablehlo.constant dense<14> : tensor<i64> loc(#loc)
%c0 = arith.constant 0 : tensor<15xi64> loc(#loc)
%cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<15x4x12xf32> loc(#loc)
%cst_1 = stablehlo.constant dense<1.000000e+00> : tensor<4x12xf32> loc(#loc)
%c_2 = stablehlo.constant dense<0> : tensor<i64> loc(#loc)
%c_3 = stablehlo.constant dense<1> : tensor<i64> loc(#loc)
%c_4 = stablehlo.constant dense<15> : tensor<i64> loc(#loc)
%cst_5 = stablehlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc)
%cst_6 = stablehlo.constant dense<0.000000e+00> : tensor<4x4xf32> loc(#loc)
%cst_7 = stablehlo.constant dense<0.000000e+00> : tensor<4x12xf32> loc(#loc)
%0 = stablehlo.transpose %arg0, dims = [2, 1, 0] : (tensor<12x16x4xf32>) -> tensor<4x16x12xf32> loc(#loc)
%1 = stablehlo.slice %0 [0:4, 0:1, 0:12] : (tensor<4x16x12xf32>) -> tensor<4x1x12xf32> loc(#loc)
%2 = stablehlo.reshape %1 : (tensor<4x1x12xf32>) -> tensor<4x12xf32> loc(#loc)
%3 = stablehlo.broadcast_in_dim %arg4, dims = [0] : (tensor<4xf32>) -> tensor<4x12xf32> loc(#loc)
%4 = stablehlo.broadcast_in_dim %arg3, dims = [0] : (tensor<4xf32>) -> tensor<4x12xf32> loc(#loc)
%5 = stablehlo.dot_general %arg1, %2, contracting_dims = [0] x [0], precision = [DEFAULT, DEFAULT] : (tensor<4x4xf32>, tensor<4x12xf32>) -> tensor<4x12xf32> loc(#loc)
%6 = stablehlo.add %5, %4 : tensor<4x12xf32> loc(#loc)
%7 = stablehlo.add %3, %6 : tensor<4x12xf32> loc(#loc)
%8 = stablehlo.tanh %7 : tensor<4x12xf32> loc(#loc)
%9 = stablehlo.broadcast_in_dim %arg1, dims = [1, 2] : (tensor<4x4xf32>) -> tensor<15x4x4xf32> loc(#loc)
%10 = stablehlo.slice %0 [0:4, 1:16, 0:12] : (tensor<4x16x12xf32>) -> tensor<4x15x12xf32> loc(#loc)
%11 = stablehlo.dot_general %9, %10, batching_dims = [0] x [1], contracting_dims = [1] x [0], precision = [DEFAULT, DEFAULT] : (tensor<15x4x4xf32>, tensor<4x15x12xf32>) -> tensor<15x4x12xf32> loc(#loc)
%12 = stablehlo.broadcast_in_dim %arg3, dims = [1] : (tensor<4xf32>) -> tensor<15x4x12xf32> loc(#loc)
%13 = stablehlo.add %11, %12 : tensor<15x4x12xf32> loc(#loc)
%14:5 = stablehlo.while(%iterArg = %c_2, %iterArg_8 = %8, %iterArg_9 = %cst_0, %iterArg_10 = %c0, %iterArg_11 = %cst_0) : tensor<i64>, tensor<4x12xf32>, tensor<15x4x12xf32>, tensor<15xi64>, tensor<15x4x12xf32>
cond {
%31 = stablehlo.compare LT, %iterArg, %c_4 : (tensor<i64>, tensor<i64>) -> tensor<i1> loc(#loc)
stablehlo.return %31 : tensor<i1> loc(#loc)
} do {
%31 = stablehlo.add %iterArg, %c_3 : tensor<i64> loc(#loc)
%32 = stablehlo.reshape %iterArg_8 : (tensor<4x12xf32>) -> tensor<1x4x12xf32> loc(#loc)
%33 = stablehlo.dynamic_update_slice %iterArg_9, %32, %iterArg, %c_2, %c_2 : (tensor<15x4x12xf32>, tensor<1x4x12xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<15x4x12xf32> loc(#loc)
%34 = stablehlo.dot_general %arg2, %iterArg_8, contracting_dims = [0] x [0], precision = [DEFAULT, DEFAULT] : (tensor<4x4xf32>, tensor<4x12xf32>) -> tensor<4x12xf32> loc(#loc)
%35 = stablehlo.add %34, %3 : tensor<4x12xf32> loc(#loc)
%36 = stablehlo.reshape %iterArg : (tensor<i64>) -> tensor<1xi64> loc(#loc)
%37 = stablehlo.dynamic_update_slice %iterArg_10, %36, %iterArg : (tensor<15xi64>, tensor<1xi64>, tensor<i64>) -> tensor<15xi64> loc(#loc)
%38 = stablehlo.dynamic_slice %13, %iterArg, %c_2, %c_2, sizes = [1, 4, 12] : (tensor<15x4x12xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<1x4x12xf32> loc(#loc)
%39 = stablehlo.reshape %38 : (tensor<1x4x12xf32>) -> tensor<4x12xf32> loc(#loc)
%40 = stablehlo.add %35, %39 : tensor<4x12xf32> loc(#loc)
%41 = stablehlo.reshape %40 : (tensor<4x12xf32>) -> tensor<1x4x12xf32> loc(#loc)
%42 = stablehlo.dynamic_update_slice %iterArg_11, %41, %iterArg, %c_2, %c_2 : (tensor<15x4x12xf32>, tensor<1x4x12xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<15x4x12xf32> loc(#loc)
%43 = stablehlo.tanh %40 : tensor<4x12xf32> loc(#loc)
stablehlo.return %31, %43, %33, %37, %42 : tensor<i64>, tensor<4x12xf32>, tensor<15x4x12xf32>, tensor<15xi64>, tensor<15x4x12xf32> loc(#loc)
} loc(#loc)
%15 = stablehlo.multiply %14#1, %14#1 : tensor<4x12xf32> loc(#loc)
%16 = stablehlo.reduce(%15 init: %cst_5) applies stablehlo.add across dimensions = [0, 1] : (tensor<4x12xf32>, tensor<f32>) -> tensor<f32> loc(#loc)
%17 = stablehlo.multiply %14#1, %cst : tensor<4x12xf32> loc(#loc)
%18:6 = stablehlo.while(%iterArg = %c_2, %iterArg_8 = %17, %iterArg_9 = %cst_0, %iterArg_10 = %cst_7, %iterArg_11 = %cst_6, %iterArg_12 = %c) : tensor<i64>, tensor<4x12xf32>, tensor<15x4x12xf32>, tensor<4x12xf32>, tensor<4x4xf32>, tensor<i64>
cond {
%31 = stablehlo.compare LT, %iterArg, %c_4 : (tensor<i64>, tensor<i64>) -> tensor<i1> loc(#loc)
stablehlo.return %31 : tensor<i1> loc(#loc)
} do {
%31 = stablehlo.add %iterArg, %c_3 : tensor<i64> loc(#loc)
%32 = stablehlo.dynamic_slice %14#4, %iterArg_12, %c_2, %c_2, sizes = [1, 4, 12] : (tensor<15x4x12xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<1x4x12xf32> loc(#loc)
%33 = stablehlo.tanh %32 : tensor<1x4x12xf32> loc(#loc)
%34 = stablehlo.multiply %33, %33 : tensor<1x4x12xf32> loc(#loc)
%35 = stablehlo.reshape %34 : (tensor<1x4x12xf32>) -> tensor<4x12xf32> loc(#loc)
%36 = stablehlo.subtract %cst_1, %35 : tensor<4x12xf32> loc(#loc)
%37 = stablehlo.multiply %iterArg_8, %36 : tensor<4x12xf32> loc(#loc)
%38 = stablehlo.reshape %37 : (tensor<4x12xf32>) -> tensor<1x4x12xf32> loc(#loc)
%39 = stablehlo.dynamic_slice %14#3, %iterArg_12, sizes = [1] : (tensor<15xi64>, tensor<i64>) -> tensor<1xi64> loc(#loc)
%40 = stablehlo.reshape %39 : (tensor<1xi64>) -> tensor<i64> loc(#loc)
%41 = stablehlo.dynamic_update_slice %cst_0, %38, %40, %c_2, %c_2 : (tensor<15x4x12xf32>, tensor<1x4x12xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<15x4x12xf32> loc(#loc)
%42 = stablehlo.add %iterArg_9, %41 : tensor<15x4x12xf32> loc(#loc)
%43 = stablehlo.add %iterArg_10, %37 : tensor<4x12xf32> loc(#loc)
%44 = stablehlo.dynamic_slice %14#2, %iterArg_12, %c_2, %c_2, sizes = [1, 4, 12] : (tensor<15x4x12xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<1x4x12xf32> loc(#loc)
%45 = stablehlo.reshape %44 : (tensor<1x4x12xf32>) -> tensor<4x12xf32> loc(#loc)
%46 = stablehlo.dot_general %45, %37, contracting_dims = [1] x [1], precision = [DEFAULT, DEFAULT] : (tensor<4x12xf32>, tensor<4x12xf32>) -> tensor<4x4xf32> loc(#loc)
%47 = stablehlo.add %iterArg_11, %46 : tensor<4x4xf32> loc(#loc)
%48 = stablehlo.dot_general %arg2, %37, contracting_dims = [1] x [0], precision = [DEFAULT, DEFAULT] : (tensor<4x4xf32>, tensor<4x12xf32>) -> tensor<4x12xf32> loc(#loc)
%49 = stablehlo.subtract %iterArg_12, %c_3 : tensor<i64> loc(#loc)
stablehlo.return %31, %48, %42, %43, %47, %49 : tensor<i64>, tensor<4x12xf32>, tensor<15x4x12xf32>, tensor<4x12xf32>, tensor<4x4xf32>, tensor<i64> loc(#loc)
} loc(#loc)
%19 = stablehlo.reduce(%18#2 init: %cst_5) applies stablehlo.add across dimensions = [0, 2] : (tensor<15x4x12xf32>, tensor<f32>) -> tensor<4xf32> loc(#loc)
%20 = stablehlo.dot_general %10, %18#2, batching_dims = [1] x [0], contracting_dims = [2] x [2], precision = [DEFAULT, DEFAULT] : (tensor<4x15x12xf32>, tensor<15x4x12xf32>) -> tensor<15x4x4xf32> loc(#loc)
%21 = stablehlo.reduce(%20 init: %cst_5) applies stablehlo.add across dimensions = [0] : (tensor<15x4x4xf32>, tensor<f32>) -> tensor<4x4xf32> loc(#loc)
%22 = stablehlo.multiply %8, %8 : tensor<4x12xf32> loc(#loc)
%23 = stablehlo.subtract %cst_1, %22 : tensor<4x12xf32> loc(#loc)
%24 = stablehlo.multiply %18#1, %23 : tensor<4x12xf32> loc(#loc)
%25 = stablehlo.add %18#3, %24 : tensor<4x12xf32> loc(#loc)
%26 = stablehlo.dot_general %2, %24, contracting_dims = [1] x [1], precision = [DEFAULT, DEFAULT] : (tensor<4x12xf32>, tensor<4x12xf32>) -> tensor<4x4xf32> loc(#loc)
%27 = stablehlo.add %21, %26 : tensor<4x4xf32> loc(#loc)
%28 = stablehlo.reduce(%24 init: %cst_5) applies stablehlo.add across dimensions = [1] : (tensor<4x12xf32>, tensor<f32>) -> tensor<4xf32> loc(#loc)
%29 = stablehlo.add %19, %28 : tensor<4xf32> loc(#loc)
%30 = stablehlo.reduce(%25 init: %cst_5) applies stablehlo.add across dimensions = [1] : (tensor<4x12xf32>, tensor<f32>) -> tensor<4xf32> loc(#loc)
return %16, %27, %18#4, %29, %30 : tensor<f32>, tensor<4x4xf32>, tensor<4x4xf32>, tensor<4xf32>, tensor<4xf32> loc(#loc)
} loc(#loc)
} loc(#loc) |
6398289 to
58f746a
Compare
Comment out the Julia CI job configuration in the pipeline.
58f746a to
5c0e420
Compare
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
needs new jll