Skip to content

Fhareed/RMT-ImageNet-Regularization-Benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RMT-ImageNet-Regularization-Benchmark

This repository contains an optimized implementation of Retentive Networks Meet Vision Transformers (RMT) for the ImageNet classification task, augmented with advanced regularization techniques:

  • SAM – Sharpness-Aware Minimization
  • SADT– Sharpness-Aware Distilled Teachers
  • CutMix – Patch-level data augmentation

Key Features

  • RMT model benchmarked on ImageNet with and without regularization
  • Multi-GPU and distributed training support
  • PyTorch implementation with modular code structure
  • Performance logging and checkpointing (excluded from repo due to size)

Project Structure

Path Description
classification_release/ Core model logic, dataloaders, training routines
main_sam.py SAM training script
main_sadt.py SADT training script
train_multigpu.py Multi-GPU trainer
checkpoints_*/ [Ignored] Checkpoints directory
*.sh Launcher scripts

Requirements

  • Python ≥ 3.8
  • PyTorch ≥ 1.10
  • CUDA-capable GPU
  • (Optional) Multi-GPU setup via torch.distributed.launch

Install dependencies:

pip install -r requirements.txt

Depending on the RMT Model you want to use

Train with Single GPU

python main_sam.py
--data-path /2tb/Farid_image_classification/ILSVRC2017_CLS-LOC/ILSVRC/Data/CLS-LOC
--data-set IMNET
--model RMT_T
--epochs 300
--batch-size 64
--lr 1e-3
--output_dir checkpoints_RMT_T_SAM
--device cuda
--use-sam
--sam-rho 0.05
--sam-adaptive

Train RMT with SAM on multiple GPUs

chmod +x launch_sam_multigpu.sh

bash launch_sam_multigpu.sh

Train RMT with SADT on multiple GPUs

chmod +x launch_sadt_multigpu.sh

bash launch_sadt_multigpu.sh

##Train with Single GPU python main_sadt.py
--data-path /2tb/Farid_image_classification/ILSVRC2017_CLS-LOC/ILSVRC/Data/CLS-LOC
--data-set IMNET
--model RMT_T
--epochs 300
--batch-size 64
--lr 1e-3
--output_dir checkpoints_RMT_T_SADT
--device cuda
--use-sadt
--sadt-noise-std 1e-4
--sadt-aux-weight 0.5
--sadt-temperature 4.0

Acknowledgements

•	Inspired by Retentive Networks Meet Vision Transformers (RMT) (Fan et al, 2024)

•	SAM from Sharpness-Aware Minimization (Foret et al., 2021)

•	SADT from recent vision regularization works (Fahim & Boutellier, 2022)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published