Skip to content

ADAMW not stable #1920

@deahhh

Description

@deahhh
m = Chain(
    Flux.Embedding(501102, 32),
    Flux.Conv((32,), 64=>235),
    Flux.flatten,
    Flux.softmax,
) |> gpu

function evalcb()
    ps = []
    ls = []
    for (d, l) in dl_test
        p = m(Flux.batch(map(random_select_sect, d)) |> gpu) |> cpu
        p = map(x->x[1], reshape(argmax(p, dims=1), :))
        append!(ps, p)
        append!(ls, l)
    end
    acc = sum(ps .== ls) / length(ps)
    println("accurate: $(acc)")
end

loss(x,y) =  Flux.Losses.focal_loss(m(reduce(hcat, map(random_select_sect, x)) |> gpu), Flux.onehotbatch(y, 1:235)|>gpu)

Flux.@epochs 50 Flux.Optimise.train!(loss,
                                    params(m),
                                    dl_train, 
                                    Flux.Optimise.ADAMW(0.0001,(0.9, 0.999), 0.01),
                                    cb=Flux.throttle(evalcb, 5))

Loss gets to be nan while raining on dataset wili-2018, about epoch 40, test data set accurate>0.8.
I am sure its a problem, because it runs well in pytorch.

By the way, hcat(map(x...)) is very slow!

Flux.batch(map(f, d)) is very fast, but will cause an error named Mutating arrays not supported

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions