Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhance examples + Fix some plot orientations #145

Merged
merged 10 commits into from
Nov 27, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 48 additions & 41 deletions examples/barotropicqg_acc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,17 @@
#md # Also, it can be viewed as a Jupyter notebook via [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/barotropicqgtopography.ipynb).
#
# An idealized version of the Southern Ocean. We solve the barotropic
# quasi-geostrophic eddy dynamics in a flud with variable depth $H-h(x,y)$. We
# quasi-geostrophic eddy dynamics in a flud with variable depth ``H-h(x,y)``. We
# also include an "Antarctic Circumpolar Current," i.e., a domain-average zonal
# velocity $U(t)$ which is forced by constant wind stress $F$ and influenced by
# velocity ``U(t)`` which is forced by constant wind stress ``F`` and influenced by
# bottom drag and topographic form stress. The equations solved are:
# $\partial_t \nabla^2\psi + \mathsf{J}(\psi-U y, \nabla^2\psi + \beta y + \eta) = -\mu\nabla^2\psi$
# and
# $\partial_t U = F - \mu U - \langle\psi\partial_x\eta\rangle$.
# ```math
# \partial_t \nabla^2 \psi + \mathsf{J}( \psi - U y, \nabla^2 \psi + \beta y + \eta ) = - \mu \nabla^2 \psi \, ,
# ```
# and
# ```math
# \partial_t U = F - \mu U - \langle \psi \partial_x \eta \rangle \, .
# ```


using FourierFlows, Plots, Printf
Expand All @@ -28,11 +32,11 @@ nothing # hide


# ## Numerical parameters and time-stepping parameters
nx = 128 # 2D resolution = nx^2
stepper = "FilteredRK4" # timestepper
dt = 0.1 # timestep
nsteps = 10000 # total number of time-steps
nsubs = 25 # number of time-steps for intermediate logging/plotting (nsteps must be multiple of nsubs)
n = 128 # 2D resolution =
stepper = "FilteredETDRK4" # timestepper
dt = 0.1 # timestep
nsteps = 8000 # total number of time-steps
nsubs = 25 # number of time-steps for intermediate logging/plotting (nsteps must be multiple of nsubs)
nothing # hide


Expand All @@ -46,31 +50,31 @@ nν = 4 # viscosity order
F = 0.0012 # normalized wind stress forcing on domain-averaged zonal flow U(t) flow
nothing # hide

# Define the topographic potential vorticity, $f_0 h(x, y)/H$
topoPV(x, y) = 2cos(4x)*cos(4y)
# Define the topographic potential vorticity, ``f_0 h(x, y)/H``,
topoPV(x, y) = 2 * cos(4x) * cos(4y)
nothing # hide

# and the forcing function $F$ (here forcing is constant in time) that acts on the domain-averaged $U$ equation.
# and the forcing function ``F`` (here forcing is constant in time) that acts on the domain-averaged ``U`` equation.
calcFU(t) = F
nothing # hide


# ## Problem setup
# We initialize a `Problem` by providing a set of keyword arguments,
prob = BarotropicQG.Problem(dev; nx=nx, Lx=Lx, β=β, eta=topoPV,
prob = BarotropicQG.Problem(dev; nx=n, Lx=Lx, β=β, eta=topoPV,
calcFU=calcFU, ν=ν, nν=nν, μ=μ, dt=dt, stepper=stepper)
nothing # hide

# and define some shortcuts.
sol, cl, vs, pr, gr = prob.sol, prob.clock, prob.vars, prob.params, prob.grid
x, y = gr.x, gr.y
sol, clock, vars, params, grid = prob.sol, prob.clock, prob.vars, prob.params, prob.grid
x, y = grid.x, grid.y
nothing # hide


# ## Setting initial conditions

# Our initial condition is simply fluid at rest.
BarotropicQG.set_zeta!(prob, zeros(gr.nx, gr.ny))
BarotropicQG.set_zeta!(prob, zeros(grid.nx, grid.ny))


# ## Diagnostics
Expand Down Expand Up @@ -100,7 +104,7 @@ nothing # hide

# and then create Output.
get_sol(prob) = sol # extracts the Fourier-transformed solution
get_u(prob) = irfft(im*gr.lr.*gr.invKrsq.*sol, gr.nx)
get_u(prob) = irfft(im * grid.lr .* grid.invKrsq .* sol, grid.nx)
out = Output(prob, filename, (:sol, get_sol), (:u, get_u))
nothing # hide

Expand All @@ -111,13 +115,15 @@ nothing # hide
# of energy and enstrophy.

function plot_output(prob)

pq = heatmap(x, y, vs.q,

grid = prob.grid

pq = heatmap(grid.x, grid.y, vars.q',
c = :balance,
clim = (-2, 2),
aspectratio = 1,
xlims = (-gr.Lx/2, gr.Lx/2),
ylims = (-gr.Ly/2, gr.Ly/2),
xlims = (-grid.Lx/2, grid.Lx/2),
ylims = (-grid.Ly/2, grid.Ly/2),
xticks = -3:3,
yticks = -3:3,
xlabel = "x",
Expand All @@ -129,19 +135,19 @@ function plot_output(prob)
label = ["eddy energy" "mean energy"],
linewidth = 2,
alpha = 0.7,
xlims = (-0.1, 10.1),
xlims = (-0.1, 1.01 * μ * nsteps * dt),
ylims = (0, 0.0008),
xlabel = "μt")

pQ = plot(2,
label = ["eddy enstrophy" "mean enstrophy"],
linewidth = 2,
alpha = 0.7,
xlims = (-0.1, 10.1),
xlims = (-0.1, 1.01 * μ * nsteps * dt),
ylims = (-0.02, 0.12),
xlabel = "μt")

l = @layout [ a{0.5w} grid(2, 1) ]
l = @layout [a{0.5w} Plots.grid(2, 1)]
p = plot(pq, pE, pQ, layout=l, size = (900, 600))

return p
Expand All @@ -157,34 +163,35 @@ p = plot_output(prob)

startwalltime = time()

anim = @animate for j=0:Int(nsteps/nsubs)
anim = @animate for j = 0:round(Int, nsteps / nsubs)

cfl = cl.dt*maximum([maximum(vs.U.+vs.u)/gr.dx, maximum(vs.v)/gr.dy])
if j % (2000 / nsubs) == 0
cfl = clock.dt * maximum([maximum(vars.U .+ vars.u) / grid.dx, maximum(vars.v) / grid.dy])

log = @sprintf("step: %04d, t: %d, cfl: %.2f, E: %.4f, Q: %.4f, walltime: %.2f min",
clock.step, clock.t, cfl, E.data[E.i], Q.data[Q.i], (time()-startwalltime)/60)

println(log)
end

log = @sprintf("step: %04d, t: %d, cfl: %.2f, E: %.4f, Q: %.4f, walltime: %.2f min",
cl.step, cl.t, cfl, E.data[E.i], Q.data[Q.i], (time()-startwalltime)/60)

if j%(2000/nsubs)==0; println(log) end

p[1][1][:z] = Array(vs.q)
p[1][:title] = "∇²ψ + η, μt="*@sprintf("%.2f", μ*cl.t)
push!(p[2][1], μ*E.t[E.i], E.data[E.i])
push!(p[2][2], μ*Emean.t[Emean.i], Emean.data[Emean.i])
push!(p[3][1], μ*Q.t[Q.i], Q.data[Q.i])
push!(p[3][2], μ*Qmean.t[Qmean.i], Qmean.data[Qmean.i])
p[1][1][:z] = vars.q
p[1][:title] = "∇²ψ + η, μt = "*@sprintf("%.2f", μ * clock.t)
push!(p[2][1], μ * E.t[E.i], E.data[E.i])
push!(p[2][2], μ * Emean.t[Emean.i], Emean.data[Emean.i])
push!(p[3][1], μ * Q.t[Q.i], Q.data[Q.i])
push!(p[3][2], μ * Qmean.t[Qmean.i], Qmean.data[Qmean.i])

stepforward!(prob, diags, nsubs)
BarotropicQG.updatevars!(prob)

end

mp4(anim, "barotropicqg_acc.mp4", fps=18)

# Note that since mean flow enstrophy is $Q_U = \beta U$ it can attain negative values.
# Note that since mean flow enstrophy is ``Q_U = \beta U`` it can attain negative values.


# ## Save

# Finally save the last snapshot.
savename = @sprintf("%s_%09d.png", joinpath(plotpath, plotname), cl.step)
savename = @sprintf("%s_%09d.png", joinpath(plotpath, plotname), clock.step)
savefig(savename)
89 changes: 46 additions & 43 deletions examples/barotropicqg_betadecay.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ nothing # hide

# ## Numerical parameters and time-stepping parameters

n = 128 # 2D resolution = n^2
n = 128 # 2D resolution = n²
stepper = "FilteredRK4" # timestepper
dt = 0.05 # timestep
nsteps = 2000 # total number of time-steps
Expand All @@ -39,70 +39,70 @@ nothing # hide

# ## Problem setup
# We initialize a `Problem` by providing a set of keyword arguments. Not providing
# a viscosity coefficient ν leads to the module's default value: ν=0. In this
# example numerical instability due to accumulation of enstrophy in high wavenumbers
# a viscosity coefficient `ν` leads to the module's default value: `ν=0`. In this
# example numerical instability due to accumulation of enstrophy at high wavenumbers
# is taken care with the `FilteredTimestepper` we picked.
prob = BarotropicQG.Problem(dev; nx=n, Lx=L, β=β, μ=μ, dt=dt, stepper=stepper)
nothing # hide

# and define some shortcuts
sol, cl, vs, pr, gr = prob.sol, prob.clock, prob.vars, prob.params, prob.grid
x, y = gr.x, gr.y
sol, clock, vars, params, grid = prob.sol, prob.clock, prob.vars, prob.params, prob.grid
x, y = grid.x, grid.y
nothing # hide


# ## Setting initial conditions

# Our initial condition consist of a flow that has power only at wavenumbers with
# $8 < \frac{L}{2\pi} \sqrt{k_x^2+k_y^2} < 10$ and initial energy $E_0$:
# ``8 < \frac{L}{2\pi} \sqrt{k_x^2 + k_y^2} < 10`` and initial energy ``E_0``:

E0 = 0.1 # energy of initial condition
E₀ = 0.1 # energy of initial condition

K = @. sqrt(gr.Krsq) # a 2D array with the total wavenumber
k = [gr.kr[i] for i=1:gr.nkr, j=1:gr.nl] # a 2D array with the zonal wavenumber
K = @. sqrt(grid.Krsq) # a 2D array with the total wavenumber
k = [grid.kr[i] for i=1:grid.nkr, j=1:grid.nl] # a 2D array with the zonal wavenumber

Random.seed!(1234)
qih = randn(Complex{eltype(gr)}, size(sol))
qih[K .< 8 * 2π/L] .= 0
qih[K .> 10 * 2π/L] .= 0
qih[k .== 0] .= 0 # no power at zonal wavenumber k=0 component
Ein = energy(qih, gr) # compute energy of qi
qih *= sqrt(E0 / Ein) # normalize qi to have energy E0
qi = irfft(qih, gr.nx)
qih = randn(Complex{eltype(grid)}, size(sol))
@. qih = ifelse(K < 2 * 2π/L, 0, qih)
@. qih = ifelse(K > 10 * 2π/L, 0, qih)
@. qih = ifelse(k == 0 * 2π/L, 0, qih) # no power at zonal wavenumber k=0 component
Ein = energy(qih, grid) # compute energy of qi
qih *= sqrt(E₀ / Ein) # normalize qi to have energy E₀
qi = irfft(qih, grid.nx)

BarotropicQG.set_zeta!(prob, qi)
nothing #hide

# Let's plot the initial vorticity field:

p1 = heatmap(x, y, vs.q,
p1 = heatmap(x, y, vars.q',
aspectratio = 1,
c = :balance,
clim = (-12, 12),
xlims = (-gr.Lx/2, gr.Lx/2),
ylims = (-gr.Ly/2, gr.Ly/2),
xlims = (-grid.Lx/2, grid.Lx/2),
ylims = (-grid.Ly/2, grid.Ly/2),
xticks = -3:3,
yticks = -3:3,
xlabel = "x",
ylabel = "y",
title = "initial vorticity ζ=∂v/∂x-∂u/∂y",
framestyle = :box)

p2 = contourf(x, y, vs.psi,
p2 = contourf(x, y, vars.psi',
aspectratio = 1,
c = :viridis,
levels = range(-0.65, stop=0.65, length=10),
clim = (-0.65, 0.65),
xlims = (-gr.Lx/2, gr.Lx/2),
ylims = (-gr.Ly/2, gr.Ly/2),
xlims = (-grid.Lx/2, grid.Lx/2),
ylims = (-grid.Ly/2, grid.Ly/2),
xticks = -3:3,
yticks = -3:3,
xlabel = "x",
ylabel = "y",
title = "initial streamfunction ψ",
framestyle = :box)

l = @layout grid(1, 2)
l = @layout Plots.grid(1, 2)
p = plot(p1, p2, layout=l, size=(900, 400))


Expand Down Expand Up @@ -131,14 +131,14 @@ nothing # hide

# and then create Output.
get_sol(prob) = sol # extracts the Fourier-transformed solution
get_u(prob) = irfft(im*gr.l.*gr.invKrsq.*sol, gr.nx)
get_u(prob) = irfft(im * grid.l .* grid.invKrsq .* sol, grid.nx)
out = Output(prob, filename, (:sol, get_sol), (:u, get_u))
nothing # hide


# ## Visualizing the simulation

# We define a function that plots the vorticity and streamfunction fields and
# We define a function that plots the vorticity and streamfunction and
# their corresponding zonal mean structure.

function plot_output(prob)
Expand All @@ -147,28 +147,28 @@ function plot_output(prob)
ζ̄ = mean(ζ, dims=1)'
ū = mean(prob.vars.u, dims=1)'

pζ = heatmap(x, y, ζ,
pζ = heatmap(x, y, ζ',
aspectratio = 1,
legend = false,
c = :balance,
clim = (-12, 12),
xlims = (-gr.Lx/2, gr.Lx/2),
ylims = (-gr.Ly/2, gr.Ly/2),
xlims = (-grid.Lx/2, grid.Lx/2),
ylims = (-grid.Ly/2, grid.Ly/2),
xticks = -3:3,
yticks = -3:3,
xlabel = "x",
ylabel = "y",
title = "vorticity ζ=∂v/∂x-∂u/∂y",
framestyle = :box)

pψ = contourf(x, y, ψ,
pψ = contourf(x, y, ψ',
aspectratio = 1,
legend = false,
c = :viridis,
levels = range(-0.65, stop=0.65, length=10),
clim = (-0.65, 0.65),
xlims = (-gr.Lx/2, gr.Lx/2),
ylims = (-gr.Ly/2, gr.Ly/2),
xlims = (-grid.Lx/2, grid.Lx/2),
ylims = (-grid.Ly/2, grid.Ly/2),
xticks = -3:3,
yticks = -3:3,
xlabel = "x",
Expand Down Expand Up @@ -196,7 +196,7 @@ function plot_output(prob)
ylabel = "y")
plot!(pum, 0*y, y, linestyle=:dash, linecolor=:black)

l = @layout grid(2, 2)
l = @layout Plots.grid(2, 2)
p = plot(pζ, pζm, pψ, pum, layout = l, size = (900, 800))

return p
Expand All @@ -212,29 +212,32 @@ startwalltime = time()

p = plot_output(prob)

anim = @animate for j=0:Int(nsteps/nsubs)
anim = @animate for j = 0:round(Int, nsteps/nsubs)

log = @sprintf("step: %04d, t: %d, E: %.4f, Q: %.4f, walltime: %.2f min",
cl.step, cl.t, E.data[E.i], Z.data[Z.i], (time()-startwalltime)/60)
if j % (1000 / nsubs) == 0
cfl = clock.dt * maximum([maximum(vars.u) / grid.dx, maximum(vars.v) / grid.dy])

if j%(1000/nsubs)==0; println(log) end
log = @sprintf("step: %04d, t: %d, cfl: %.2f, E: %.4f, Q: %.4f, walltime: %.2f min",
clock.step, clock.t, cfl, E.data[E.i], Z.data[Z.i], (time()-startwalltime)/60)

println(log)
end

p[1][1][:z] = Array(vs.zeta)
p[1][:title] = "vorticity, t="*@sprintf("%.2f", cl.t)
p[3][1][:z] = Array(vs.psi)
p[2][1][:x] = mean(vs.zeta, dims=1)'
p[4][1][:x] = mean(vs.u, dims=1)'
p[1][1][:z] = vars.zeta
p[1][:title] = "vorticity, t="*@sprintf("%.2f", clock.t)
p[3][1][:z] = vars.psi
p[2][1][:x] = mean(vars.zeta, dims=1)'
p[4][1][:x] = mean(vars.u, dims=1)'

stepforward!(prob, diags, nsubs)
BarotropicQG.updatevars!(prob)

end

mp4(anim, "barotropicqg_betadecay.mp4", fps=14)
mp4(anim, "barotropicqg_betadecay.mp4", fps=12)

# ## Save

# Finally save the last snapshot.
savename = @sprintf("%s_%09d.png", joinpath(plotpath, plotname), cl.step)
savename = @sprintf("%s_%09d.png", joinpath(plotpath, plotname), clock.step)
savefig(savename)
Loading