This repository contains prototypes for ETL Pipelines, Workflow Automation, Data Modeling, and API Development.
Based on Apache Airflow docs (airflow.apache.org) and FastAPI (fastapi.tiangolo.com), we'll automate data workflows and APIs.
- ETL Pipelines: Extract, transform, load data.
- Workflow Automation: Orchestrate tasks with schedulers.
- Data Modeling: Schema design and validation.
- API Development: RESTful endpoints for data access.
- Python 3.8+
- Libraries: Pandas, SQLAlchemy, FastAPI, Airflow.
- Dependencies: Install via
pip install pandas sqlalchemy fastapi airflow.
- ETL Pipeline:
import pandas as pd; df = pd.read_csv('data.csv') - API Endpoint:
from fastapi import FastAPI; app = FastAPI()
- Files Added: etl_pipeline.py (data processing), workflow_automation.py (Airflow DAG), data_modeling.py (SQLAlchemy schemas), api_development.py (FastAPI endpoints), test_etl.py (unit tests).
- How to Run: Install deps, run
python api_development.pyfor API. Tests:python test_etl.py. - Trade-offs: SQLite for simplicity; scale to PostgreSQL for production.