Skip to content

IsolationKernel/Kernel-bounded-clustering-versus-spectral-clustering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 

Repository files navigation

This is the code of the paper Kernel-Bounded Clustering: Achieving the Objective of Spectral Clustering without Eigendecomposition

Paper

Journal PDF

Dependencies


Python Pypi

pip install kbc-clustering

Usage


from kbc import KBC
import numpy as np

X = np.random.rand(1000, 50)
model = KBC(k=5, tau=0.4, psi=64, random_state=42)
labels = model.fit_predict(X)

MATLAB R2023a: codes/demo_nss_kbc.m gives an example of clustering using $NSS$-KBC, and codes/EC_sample.m implements the $NSS$-KBC algorithm.

License


License.

Reference


Hang Zhang and Kai Ming Ting and Ye Zhu. Kernel-Bounded Clustering: Achieving the Objective of Spectral Clustering without Eigendecomposition. Artificial Intelligence.

@article{zhang2025kernel,
  title={Kernel-Bounded Clustering: Achieving the Objective of Spectral Clustering without Eigendecomposition},
  author={Zhang, Hang and Ting, Kai Ming and Zhu, Ye},
  journal={Artificial Intelligence},
  pages={104440},
  year={2025},
  publisher={Elsevier}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages