This is the code of the paper Kernel-Bounded Clustering: Achieving the Objective of Spectral Clustering without Eigendecomposition
pip install kbc-clusteringfrom kbc import KBC
import numpy as np
X = np.random.rand(1000, 50)
model = KBC(k=5, tau=0.4, psi=64, random_state=42)
labels = model.fit_predict(X)MATLAB R2023a:
codes/demo_nss_kbc.m gives an example of clustering using
License.
Hang Zhang and Kai Ming Ting and Ye Zhu. Kernel-Bounded Clustering: Achieving the Objective of Spectral Clustering without Eigendecomposition. Artificial Intelligence.
@article{zhang2025kernel,
title={Kernel-Bounded Clustering: Achieving the Objective of Spectral Clustering without Eigendecomposition},
author={Zhang, Hang and Ting, Kai Ming and Zhu, Ye},
journal={Artificial Intelligence},
pages={104440},
year={2025},
publisher={Elsevier}
}