Skip to content

Jiliar/mcp-server

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“Š MCP Server - Personal Expense Manager

An MCP (Model Context Protocol) server for managing and analyzing personal expenses from CSV files.

πŸš€ Features

  • Add expenses to a CSV file with categorization
  • Get recent expenses with day-based filtering
  • MCP Resource for direct access to all expenses
  • Specialized prompt that generates automatic analytical summaries
  • Analysis by category and payment method
  • Trend detection and spending patterns

πŸ“‹ Requirements

pip install fastmcp mcp

πŸ—‚οΈ Project Structure

expenses-mcp-server/
β”œβ”€β”€ server.py              # Main MCP server
β”œβ”€β”€ data/
β”‚   └── expenses.csv      # Expenses file (created automatically)
β”œβ”€β”€ requirements.txt
└── README.md

πŸ› οΈ Installation & Usage

1. Clone or create the project

mkdir expenses-mcp-server
cd expenses-mcp-server

2. Create virtual environment (recommended)

python -m venv venv
source venv/bin/activate  # Linux/Mac
# or
venv\Scripts\activate     # Windows

3. Install dependencies

pip install fastmcp mcp

4. Run the server

python server.py

πŸ”§ Available Functionalities

Tools

1. agregar_gasto (Add Expense)

Adds a new expense to the system.

Parameters:

  • fecha: Date in 'YYYY-MM-DD' format
  • categoria: Expense category (e.g., "Food", "Transport")
  • cantidad: Expense amount (float)
  • metodo_pago: Payment method used

Example:

agregar_gasto("2024-01-15", "Groceries", 150.75, "Debit Card")

2. obtener_gastos_recientes (Get Recent Expenses)

Gets expenses from the last N days.

Parameters:

  • dias: Number of days to query (default: 5)

Example:

obtener_gastos_recientes(7)  # Last 7 days

Resource

resource://gastos

Direct access to all stored expenses.

Specialized Prompt

Resumen de Gastos Recientes (Recent Expenses Summary)

Generates a prompt with structured data for AI to create a complete analysis including:

  • πŸ“ˆ Statistical calculations (totals, averages)
  • 🏷️ Category analysis
  • πŸ’³ Payment method distribution
  • πŸ” Trend identification
  • πŸ’‘ Personalized recommendations

πŸ“Š CSV Structure

The data/expenses.csv file has the following structure:

fecha,categoria,cantidad,metodo_pago
2024-01-15,Groceries,150.75,Debit Card
2024-01-16,Transport,45.50,Cash
2024-01-17,Entertainment,89.99,Credit Card

πŸ”Œ MCP Client Integration

Python Client Example

import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async def main():
    server_params = StdioServerParameters(
        command="python",
        args=["server.py"]
    )
    
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write) as session:
            # Initialize session
            await session.initialize()
            
            # Add expense
            result = await session.call_tool(
                "agregar_gasto",
                {
                    "fecha": "2024-01-18",
                    "categoria": "Restaurant", 
                    "cantidad": 85.50,
                    "metodo_pago": "Credit Card"
                }
            )
            print(result)
            
            # Get recent expenses
            expenses = await session.call_tool(
                "obtener_gastos_recientes", 
                {"dias": 5}
            )
            print(expenses)

if __name__ == "__main__":
    asyncio.run(main())

🎯 Use Cases

1. Daily Expense Tracking

# Add transport expense
agregar_gasto("2024-01-18", "Transport", 35.00, "Cash")

# Add food expense
agregar_gasto("2024-01-18", "Food", 120.00, "Debit Card")

2. Weekly Analysis

# Get last week summary
obtener_gastos_recientes(7)

3. Monthly Report

# Complete 30-day analysis
obtener_gastos_recientes(30)

πŸ“ˆ Example Generated Analysis

The specialized prompt generates analysis like:

πŸ“Š EXPENSE SUMMARY - LAST 5 DAYS

πŸ’° TOTAL SPENT: $1,245.75
πŸ“… DAILY AVERAGE: $249.15
πŸ”’ TRANSACTIONS: 8 purchases

🏷️ CATEGORY DISTRIBUTION:
β€’ Groceries: 45% ($560.25)
β€’ Transport: 25% ($311.44)  
β€’ Entertainment: 20% ($249.15)
β€’ Restaurant: 10% ($124.58)

πŸ’³ PAYMENT METHODS:
β€’ Credit Card: 60%
β€’ Debit Card: 30%
β€’ Cash: 10%

πŸ“ˆ OBSERVATIONS:
β€’ Highest spending on Wednesday ($420.50)
β€’ "Groceries" category represents almost half of expenses
β€’ Growing trend in credit card usage

πŸ’‘ RECOMMENDATIONS:
β€’ Consider bulk purchases to reduce grocery expenses
β€’ Diversify payment methods for better control
β€’ Set weekly limit for entertainment

πŸ› οΈ Troubleshooting

Error: "FileNotFoundError"

  • Ensure the data/ directory exists
  • Server creates the file automatically with the first expense

Error: "Encoding issues"

  • Server uses UTF-8 for special character compatibility

Error: "Invalid date format"

  • Use exact format: YYYY-MM-DD
  • Example: 2024-01-18

πŸ“ License

MIT License

πŸ“ž Support

For issues and questions, open a ticket in the project repository.


Start tracking your expenses intelligently! πŸš€

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages