Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 56 additions & 16 deletions stdlib/SparseArrays/src/sparsevector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1494,7 +1494,7 @@ function (*)(A::StridedMatrix{Ta}, x::AbstractSparseVector{Tx}) where {Ta,Tx}
require_one_based_indexing(A, x)
m, n = size(A)
length(x) == n || throw(DimensionMismatch())
Ty = promote_type(Ta, Tx)
Ty = promote_op(matprod, Ta, Tx)
y = Vector{Ty}(undef, m)
mul!(y, A, x)
end
Expand Down Expand Up @@ -1531,23 +1531,62 @@ end

function *(transA::Transpose{<:Any,<:StridedMatrix{Ta}}, x::AbstractSparseVector{Tx}) where {Ta,Tx}
require_one_based_indexing(transA, x)
A = transA.parent
m, n = size(A)
length(x) == m || throw(DimensionMismatch())
Ty = promote_type(Ta, Tx)
y = Vector{Ty}(undef, n)
mul!(y, transpose(A), x)
m, n = size(transA)
length(x) == n || throw(DimensionMismatch())
Ty = promote_op(matprod, Ta, Tx)
y = Vector{Ty}(undef, m)
mul!(y, transA, x)
end

mul!(y::AbstractVector{Ty}, transA::Transpose{<:Any,<:StridedMatrix}, x::AbstractSparseVector{Tx}) where {Tx,Ty} =
(A = transA.parent; mul!(y, transpose(A), x, one(Tx), zero(Ty)))
mul!(y, transA, x, one(Tx), zero(Ty))

function mul!(y::AbstractVector, transA::Transpose{<:Any,<:StridedMatrix}, x::AbstractSparseVector, α::Number, β::Number)
require_one_based_indexing(y, transA, x)
m, n = size(transA)
length(x) == n && length(y) == m || throw(DimensionMismatch())
m == 0 && return y
if β != one(β)
β == zero(β) ? fill!(y, zero(eltype(y))) : rmul!(y, β)
end
α == zero(α) && return y

xnzind = nonzeroinds(x)
xnzval = nonzeros(x)
_nnz = length(xnzind)
_nnz == 0 && return y

A = transA.parent
require_one_based_indexing(y, A, x)
m, n = size(A)
length(x) == m && length(y) == n || throw(DimensionMismatch())
n == 0 && return y
Ty = promote_op(matprod, eltype(A), eltype(x))
@inbounds for j = 1:m
s = zero(Ty)
for i = 1:_nnz
s += transpose(A[xnzind[i], j]) * xnzval[i]
end
y[j] += s * α
end
return y
end

# * and mul!(C, adjoint(A), B)

function *(adjA::Adjoint{<:Any,<:StridedMatrix{Ta}}, x::AbstractSparseVector{Tx}) where {Ta,Tx}
require_one_based_indexing(adjA, x)
m, n = size(adjA)
length(x) == n || throw(DimensionMismatch())
Ty = promote_op(matprod, Ta, Tx)
y = Vector{Ty}(undef, m)
mul!(y, adjA, x)
end

mul!(y::AbstractVector{Ty}, adjA::Adjoint{<:Any,<:StridedMatrix}, x::AbstractSparseVector{Tx}) where {Tx,Ty} =
mul!(y, adjA, x, one(Tx), zero(Ty))

function mul!(y::AbstractVector, adjA::Adjoint{<:Any,<:StridedMatrix}, x::AbstractSparseVector, α::Number, β::Number)
require_one_based_indexing(y, adjA, x)
m, n = size(adjA)
length(x) == n && length(y) == m || throw(DimensionMismatch())
m == 0 && return y
if β != one(β)
β == zero(β) ? fill!(y, zero(eltype(y))) : rmul!(y, β)
end
Expand All @@ -1558,11 +1597,12 @@ function mul!(y::AbstractVector, transA::Transpose{<:Any,<:StridedMatrix}, x::Ab
_nnz = length(xnzind)
_nnz == 0 && return y

s0 = zero(eltype(A)) * zero(eltype(x))
@inbounds for j = 1:n
s = zero(s0)
A = adjA.parent
Ty = promote_op(matprod, eltype(A), eltype(x))
@inbounds for j = 1:m
s = zero(Ty)
for i = 1:_nnz
s += A[xnzind[i], j] * xnzval[i]
s += adjoint(A[xnzind[i], j]) * xnzval[i]
end
y[j] += s * α
end
Expand Down
58 changes: 37 additions & 21 deletions stdlib/SparseArrays/test/sparsevector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -841,30 +841,46 @@ end

@testset "BLAS Level-2" begin
@testset "dense A * sparse x -> dense y" begin
let A = randn(9, 16), x = sprand(16, 0.7)
xf = Array(x)
for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
y = rand(9)
rr = α*A*xf + β*y
@test mul!(y, A, x, α, β) === y
@test y ≈ rr
for TA in (Float64, ComplexF64), Tx in (Float64, ComplexF64)
T = Base.promote_op(LinearAlgebra.matprod, TA, Tx)
let A = randn(TA, 9, 16), x = sprand(Tx, 16, 0.7)
xf = Array(x)
for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
y = rand(T, 9)
rr = α*A*xf + β*y
@test mul!(y, A, x, α, β) === y
@test y ≈ rr
end
y = A*x
@test isa(y, Vector{T})
@test A*x ≈ A*xf
end
y = A*x
@test isa(y, Vector{Float64})
@test A*x ≈ A*xf
end

let A = randn(16, 9), x = sprand(16, 0.7)
xf = Array(x)
for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
y = rand(9)
rr = α*A'xf + β*y
@test mul!(y, transpose(A), x, α, β) === y
@test y ≈ rr
let A = randn(TA, 16, 9), x = sprand(Tx, 16, 0.7)
xf = Array(x)
for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
y = rand(T, 9)
rr = α*transpose(A)*xf + β*y
@test mul!(y, transpose(A), x, α, β) === y
@test y ≈ rr
end
y = *(transpose(A), x)
@test isa(y, Vector{T})
@test y ≈ *(transpose(A), xf)
end

let A = randn(TA, 16, 9), x = sprand(Tx, 16, 0.7)
xf = Array(x)
for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
y = rand(T, 9)
rr = α*A'xf + β*y
@test mul!(y, adjoint(A), x, α, β) === y
@test y ≈ rr
end
y = *(adjoint(A), x)
@test isa(y, Vector{T})
@test y ≈ *(adjoint(A), xf)
end
y = *(transpose(A), x)
@test isa(y, Vector{Float64})
@test y ≈ *(transpose(A), xf)
end
end
@testset "sparse A * sparse x -> dense y" begin
Expand Down