Skip to content

KamigonNoMercy/pistachio-autoencoder-keras

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌰 Pistachio Denoising Autoencoder (Keras)

This project builds a denoising autoencoder using Keras to reconstruct pistachio images.
The model learns to remove noise from input images while preserving key visual structures.


πŸŽ₯ Analysis Video

Watch the analysis walkthrough here:
πŸ‘‰ https://drive.google.com/file/d/13tzPI8Nu54--qUF7t2QlANgjQZ82gDCa/view?usp=sharing


πŸ“Š Dataset

The dataset contains pistachio images with a consistent black background.
All images are in .jpg format with uniform size.

You can access the dataset here: https://drive.google.com/drive/folders/1KXWgrZw1nJY6u8xo9grzWbSVbxEFuaCt?usp=sharing

Preprocessing

  • Images split into train/test sets using train_test_split.
  • Synthetic noise (e.g., Gaussian noise) is added to simulate noisy inputs.
  • Normalization: pixel values scaled to [0, 1].

✨ Highlights

  • Model Architecture

    • Autoencoder with convolutional encoder and decoder.
    • Encoder: stacked Conv2D + MaxPooling layers.
    • Decoder: Conv2DTranspose (upsampling) layers.
  • Training Setup

    • Loss: Mean Squared Error (MSE)
    • Optimizer: Adam
    • Callback: EarlyStopping to prevent overfitting.
  • Evaluation

    • Quantitative metrics: PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), MSE.
    • Qualitative results: comparison of original β†’ noisy β†’ reconstructed images.
  • Hyperparameter Tuning

    • Implemented with Keras Tuner for hidden size and learning rate search.

πŸ“‚ Repository Layout

pistachio-autoencoder-keras/
β”œβ”€ notebook/
β”‚ └─ pistachio-autoencoder.ipynb
β”œβ”€ README.md
β”œβ”€ requirements.txt
β”œβ”€ LICENSE
└─ .gitignore

πŸ›  Environment

Install dependencies:

pip install -r requirements.txt

πŸš€ Run the Notebook

jupyter notebook notebook/pistachio-autoencoder.ipynb

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published