A comprehensive, production-ready framework for benchmarking, testing, and evaluating Large Language Models
Features β’ Quick Start β’ Documentation β’ Architecture β’ Contributing
LLM Test Bench is a powerful, enterprise-grade framework built in Rust for comprehensive testing, benchmarking, and evaluation of Large Language Models. It provides a unified interface to test multiple LLM providers, evaluate responses with sophisticated metrics, and visualize results through an intuitive dashboard.
- π Multi-Provider Support: Test 14+ LLM providers with 65 models through a single, unified interface
- π Latest Models: Full support for GPT-5, Claude Opus 4, Gemini 2.5, and all 2025 releases
- π Comprehensive Metrics: Evaluate models with perplexity, coherence, relevance, faithfulness, and custom evaluators
- β‘ High Performance: Built in Rust for speed, safety, and scalability
- π¨ Rich Visualization: Interactive dashboards with real-time metrics and beautiful charts
- π Extensible: Plugin system, custom evaluators, and distributed computing support
- π³ Production Ready: Docker support, monitoring, REST/GraphQL APIs, and WebSocket streaming
OpenAI (27 models)
gpt-5
gpt-4.5, gpt-4.5-2025-02-27
gpt-4.1, gpt-4.1-2025-04
gpt-4o, gpt-4o-2024-11-20, gpt-4o-2024-08-06, gpt-4o-2024-05-13
gpt-4o-mini, gpt-4o-mini-2024-07-18
o1, o1-preview, o1-preview-2024-09-12, o1-mini, o1-mini-2024-09-12, o3-mini
gpt-4-turbo, gpt-4-turbo-2024-04-09, gpt-4-turbo-preview
gpt-4-0125-preview, gpt-4-1106-preview
gpt-4, gpt-4-0613
gpt-3.5-turbo, gpt-3.5-turbo-0125, gpt-3.5-turbo-1106
Anthropic (15 models)
claude-opus-4, claude-opus-4-20250501
claude-sonnet-4.5, claude-sonnet-4.5-20250901
claude-sonnet-4, claude-sonnet-4-20250514
claude-3-5-sonnet-latest, claude-3-5-sonnet-20241022, claude-3-5-sonnet-20240620
claude-3-5-haiku-latest, claude-3-5-haiku-20241022
claude-3-opus-latest, claude-3-opus-20240229
claude-3-sonnet-20240229
claude-3-haiku-20240307
Google Gemini (16 models)
gemini-2.5-pro
gemini-2.5-computer-use, gemini-2.5-computer-use-20251007
gemini-2.0-flash-exp, gemini-2.0-flash-thinking-exp-1219
gemini-1.5-pro, gemini-1.5-pro-latest, gemini-1.5-pro-002, gemini-1.5-pro-001
gemini-1.5-flash, gemini-1.5-flash-latest, gemini-1.5-flash-002
gemini-1.5-flash-001, gemini-1.5-flash-8b
gemini-pro, gemini-pro-vision
Mistral AI (7 models)
mistral-code, mistral-code-20250604
magistral-large, magistral-medium, magistral-small
voxtral-small, voxtral-small-20250701
Additional Providers
- Azure OpenAI: All OpenAI models via Azure endpoints
- AWS Bedrock: Claude, Llama, Titan, and more
- Cohere: Command, Command R/R+
- Open Source: Ollama, Hugging Face, Together AI, Replicate
- Specialized: Groq, Perplexity AI
- Perplexity Analysis: Statistical language model evaluation
- Coherence Scoring: Semantic consistency and logical flow
- Relevance Evaluation: Context-aware response quality
- Faithfulness Testing: Source attribution and hallucination detection
- LLM-as-Judge: Use LLMs to evaluate other LLMs
- Text Analysis: Readability, sentiment, toxicity, PII detection
- Custom Evaluators: Build your own evaluation metrics
- Systematic Testing: Automated test suites with rich assertions
- Comparative Analysis: Side-by-side model comparison
- Performance Profiling: Latency, throughput, and cost tracking
- A/B Testing: Statistical significance testing for model selection
- Optimization Tools: Automatic parameter tuning and model recommendation
- Interactive Dashboard: Real-time metrics with Chart.js
- Rich Charts: Performance graphs, cost analysis, trend visualization
- Multiple Formats: HTML reports, JSON exports, custom templates
- Cost Analysis: Track spending across providers and models
- Historical Trends: Long-term performance tracking
- REST API: Complete HTTP API with authentication
- GraphQL: Flexible query interface for complex data needs
- WebSocket: Real-time streaming and live updates
- Monitoring: Prometheus metrics and health checks
- Distributed Computing: Scale benchmarks across multiple nodes
- Plugin System: WASM-based sandboxed plugins
- Custom Evaluators: Implement domain-specific metrics
- Multimodal Support: Image, audio, and video evaluation
- Database Backend: PostgreSQL with repository pattern
- Flexible Architecture: Clean, modular design for easy extension
# Install from crates.io
cargo install llm-test-bench
# Verify installation
llm-test-bench --versionCLI Package:
# Install CLI globally
npm install -g @llm-dev-ops/test-bench-cli
# Or use with npx (no installation required)
npx @llm-dev-ops/test-bench-cli --help
# Use the ltb command
ltb --versionSDK Package (for programmatic use):
# Install SDK in your project
npm install @llm-dev-ops/test-bench-sdk
# Use in TypeScript/JavaScript
import { LLMTestBench } from '@llm-dev-ops/test-bench-sdk';
const bench = new LLMTestBench();
const results = await bench.benchmark({
provider: 'openai',
model: 'gpt-4',
prompts: ['Explain quantum computing']
});# Clone the repository
git clone https://github.com/globalbusinessadvisors/llm-test-bench.git
cd llm-test-bench
# Build and install
cargo install --path cli- For Cargo: Rust 1.75.0 or later (Install Rust)
- For npm: Node.js 14.0.0+ and Rust (Install Node, Install Rust)
- API Keys: At least one LLM provider API key
Set up your API keys as environment variables:
# OpenAI
export OPENAI_API_KEY="sk-..."
# Anthropic
export ANTHROPIC_API_KEY="sk-ant-..."
# Google
export GOOGLE_API_KEY="..."
# AWS Bedrock
export AWS_ACCESS_KEY_ID="..."
export AWS_SECRET_ACCESS_KEY="..."
export AWS_REGION="us-east-1"Or create a .env file:
cp .env.example .env
# Edit .env with your API keys# Run a simple benchmark with GPT-5
llm-test-bench bench --provider openai --model gpt-5 --prompt "Explain quantum computing"
# Test with Claude Opus 4
llm-test-bench bench --provider anthropic --model claude-opus-4 --prompt "Code review this function"
# Use Gemini 2.5 Computer Use
llm-test-bench bench --provider google --model gemini-2.5-computer-use --prompt "Automate this task"
# Compare multiple models across providers
llm-test-bench compare \
--models "openai:gpt-5,anthropic:claude-opus-4,google:gemini-2.5-pro" \
--prompt "Write a Python function to sort a list"
# Benchmark code models
llm-test-bench bench --provider mistral --model mistral-code --prompt "Implement binary search"
# Analyze results
llm-test-bench analyze --results benchmark_results.json
# Launch interactive dashboard
llm-test-bench dashboard --port 8080
# Optimize model selection
llm-test-bench optimize \
--metric latency \
--max-cost 0.01 \
--dataset prompts.json# Using Docker Compose (includes PostgreSQL, Redis, Prometheus)
docker-compose up -d
# Access the dashboard
open http://localhost:8080
# View metrics
open http://localhost:9090 # Prometheus- Quick Start Guide - Get up and running in 5 minutes
- CLI Reference - Complete command-line documentation
- Configuration Guide - Advanced configuration options
- Architecture Overview - System design and components
- Workspace Structure - Project organization
- Technical Architecture - Deep dive into design
- Provider Support - All supported LLM providers
- API Documentation - REST & GraphQL API reference
- Monitoring - Observability and metrics
- Distributed Computing - Scaling across nodes
- Multimodal - Image, audio, and video support
- Plugins - Extensibility and custom plugins
- Docker Deployment - Containerized deployment guide
- Database Setup - PostgreSQL configuration
- Phase Implementation Reports - Detailed implementation history
- Contributing Guide - How to contribute
- Development Setup - Set up your dev environment
LLM Test Bench follows a clean, modular architecture:
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β CLI Layer β
β bench β compare β analyze β dashboard β optimize β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Core Library (core/) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β’ Providers β’ Evaluators β’ Orchestration β
β β’ Analytics β’ Visualization β’ Monitoring β
β β’ Distributed β’ Plugins β’ Multimodal β
β β’ API Server β’ Database β’ Configuration β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β External Services β
β LLM APIs β PostgreSQL β Redis β Prometheus β S3 β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
- Providers: Unified interface for 14+ LLM providers
- Evaluators: Pluggable metrics for response quality assessment
- Orchestration: Intelligent routing, ranking, and comparison
- Visualization: Interactive dashboards and rich reporting
- API Server: REST, GraphQL, and WebSocket endpoints
- Distributed: Cluster coordination for large-scale benchmarks
- Monitoring: Prometheus metrics and health checks
- Plugins: WASM-based extensibility system
- Language: Rust π¦
- CLI: Clap (command-line parsing)
- Async: Tokio (async runtime)
- HTTP: Axum (web framework)
- Database: SQLx + PostgreSQL
- Serialization: Serde (JSON/YAML)
- GraphQL: Async-GraphQL
- Monitoring: Prometheus client
- WebSocket: Tokio-Tungstenite
- Distributed: Custom protocol over TCP
- Plugins: Wasmtime (WASM runtime)
llm-test-bench/
βββ cli/ # Command-line interface
β βββ src/
β β βββ commands/ # CLI commands (bench, compare, etc.)
β β βββ main.rs
β βββ tests/ # Integration tests
βββ core/ # Core library
β βββ src/
β β βββ providers/ # LLM provider implementations
β β βββ evaluators/ # Evaluation metrics
β β βββ orchestration/ # Model routing & comparison
β β βββ visualization/ # Dashboard & charts
β β βββ api/ # REST/GraphQL/WebSocket
β β βββ distributed/ # Cluster coordination
β β βββ monitoring/ # Metrics & health checks
β β βββ plugins/ # Plugin system
β β βββ multimodal/ # Image/audio/video
β β βββ analytics/ # Statistics & optimization
β β βββ config/ # Configuration
β βββ tests/ # Unit & integration tests
βββ docs/ # Documentation
βββ examples/ # Usage examples
βββ plans/ # Architecture & planning docs
βββ docker-compose.yml # Docker deployment
Compare multiple LLM providers to choose the best model for your use case based on quality, cost, and latency.
Systematic testing of LLM applications with rich assertions and automated evaluation metrics.
Measure and track latency, throughput, and cost across different models and configurations.
Ensure model updates don't degrade quality with historical comparison and automated alerts.
Identify the most cost-effective model that meets your quality requirements.
Rapid prototyping and comparison of different prompts, models, and parameters.
We welcome contributions! Please see our Contributing Guide for details.
# Clone and build
git clone https://github.com/globalbusinessadvisors/llm-test-bench.git
cd llm-test-bench
cargo build
# Run tests
cargo test
# Run with logging
RUST_LOG=debug cargo run -- bench --help
# Format code
cargo fmt
# Lint
cargo clippy -- -D warnings- π New LLM provider integrations
- π Additional evaluation metrics
- π¨ Visualization improvements
- π Documentation enhancements
- π Bug fixes and performance improvements
- β¨ New features and capabilities
This project is licensed under the MIT License - see the LICENSE file for details.
- Built with Rust π¦
- Inspired by the need for comprehensive LLM testing tools
- Thanks to all contributors and the open-source community
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: docs/
- β Multi-provider LLM support (14+ providers)
- β Advanced evaluation metrics
- β Visualization dashboard
- β REST/GraphQL/WebSocket APIs
- β Distributed computing
- β Monitoring & observability
- β Plugin system
- β Docker deployment
- β PostgreSQL backend
- π§ Enhanced multimodal support
- π§ Advanced cost optimization
- π§ Plugin marketplace
- π§ Cloud deployment templates
- π Real-time collaboration features
- π Advanced A/B testing framework
- π Integration with MLOps platforms
- π Enterprise SSO and RBAC
β Star us on GitHub β it motivates us a lot!
Report Bug β’ Request Feature β’ Documentation
Made with β€οΈ by the LLM Test Bench Team