Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion tests/data/serialization/ndjson/test_video.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
from labelbox import parser

from labelbox.data.serialization.ndjson.converter import NDJsonConverter
from labelbox.schema.annotation_import import MALPredictionImport
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

not used



def test_video():
Expand Down
8 changes: 6 additions & 2 deletions tests/integration/annotation_import/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -508,8 +508,12 @@ def configured_project(client, initial_dataset, ontology, rand_gen, image_url):

data_row_ids = []

for _ in range(len(ontology['tools']) + len(ontology['classifications'])):
data_row_ids.append(dataset.create_data_row(row_data=image_url).uid)
ontologies = ontology['tools'] + ontology['classifications']
for ind in range(len(ontologies)):
data_row_ids.append(
dataset.create_data_row(
row_data=image_url,
global_key=f"gk_{ontologies[ind]['name']}_{rand_gen(str)}").uid)
project._wait_until_data_rows_are_processed(data_row_ids=data_row_ids,
sleep_interval=3)

Expand Down
86 changes: 86 additions & 0 deletions tests/integration/annotation_import/test_data_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,51 @@ def test_import_data_types(
data_row.delete()


def test_import_data_types_by_global_key(
client,
configured_project,
initial_dataset,
rand_gen,
data_row_json_by_data_type,
annotations_by_data_type,
):

project = configured_project
project_id = project.uid
dataset = initial_dataset
data_type_class = ImageData
set_project_media_type_from_data_type(project, data_type_class)

data_row_ndjson = data_row_json_by_data_type['image']
data_row_ndjson['global_key'] = str(uuid.uuid4())
data_row = create_data_row_for_project(project, dataset, data_row_ndjson,
rand_gen(str))

annotations_ndjson = annotations_by_data_type['image']
annotations_list = [
label.annotations
for label in NDJsonConverter.deserialize(annotations_ndjson)
]
labels = [
lb_types.Label(data=data_type_class(global_key=data_row.global_key),
annotations=annotations)
for annotations in annotations_list
]

label_import = lb.LabelImport.create_from_objects(client, project_id,
f'test-import-image',
labels)
label_import.wait_until_done()

assert label_import.state == AnnotationImportState.FINISHED
assert len(label_import.errors) == 0
exported_labels = project.export_labels(download=True)
objects = exported_labels[0]['Label']['objects']
classifications = exported_labels[0]['Label']['classifications']
assert len(objects) + len(classifications) == len(labels)
data_row.delete()


def validate_iso_format(date_string: str):
parsed_t = datetime.datetime.fromisoformat(
date_string) #this will blow up if the string is not in iso format
Expand Down Expand Up @@ -321,6 +366,17 @@ def one_datarow(client, rand_gen, data_row_json_by_data_type, data_type):
dataset.delete()


@pytest.fixture
def one_datarow_global_key(client, rand_gen, data_row_json_by_data_type):
dataset = client.create_dataset(name=rand_gen(str))
data_row_json = data_row_json_by_data_type['video']
data_row = dataset.create_data_row(data_row_json)

yield data_row

dataset.delete()


@pytest.mark.parametrize('data_type, data_class, annotations', test_params)
def test_import_mal_annotations(client, configured_project_with_one_data_row,
data_type, data_class, annotations, rand_gen,
Expand Down Expand Up @@ -348,3 +404,33 @@ def test_import_mal_annotations(client, configured_project_with_one_data_row,

assert import_annotations.errors == []
# MAL Labels cannot be exported and compared to input labels


def test_import_mal_annotations_global_key(client,
configured_project_with_one_data_row,
rand_gen, one_datarow_global_key):
data_class = lb_types.VideoData
data_row = one_datarow_global_key
annotations = [video_mask_annotation]
set_project_media_type_from_data_type(configured_project_with_one_data_row,
data_class)

configured_project_with_one_data_row.create_batch(
rand_gen(str),
[data_row.uid],
)

labels = [
lb_types.Label(data=data_class(global_key=data_row.global_key),
annotations=annotations)
]

import_annotations = lb.MALPredictionImport.create_from_objects(
client=client,
project_id=configured_project_with_one_data_row.uid,
name=f"import {str(uuid.uuid4())}",
predictions=labels)
import_annotations.wait_until_done()

assert import_annotations.errors == []
# MAL Labels cannot be exported and compared to input labels
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,25 @@ def test_create_from_objects(model_run_with_data_rows, object_predictions,
annotation_import.wait_until_done()


def test_create_from_objects_global_key(client, model_run_with_data_rows,
entity_inference,
annotation_import_test_helpers):
name = str(uuid.uuid4())
dr = client.get_data_row(entity_inference['dataRow']['id'])
del entity_inference['dataRow']['id']
entity_inference['dataRow']['globalKey'] = dr.global_key
object_predictions = [entity_inference]

annotation_import = model_run_with_data_rows.add_predictions(
name=name, predictions=object_predictions)

assert annotation_import.model_run_id == model_run_with_data_rows.uid
annotation_import_test_helpers.check_running_state(annotation_import, name)
annotation_import_test_helpers.assert_file_content(
annotation_import.input_file_url, object_predictions)
annotation_import.wait_until_done()


def test_create_from_objects_with_confidence(predictions_with_confidence,
model_run_with_data_rows,
annotation_import_test_helpers):
Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
import uuid
from labelbox import parser
import pytest

from labelbox.schema.annotation_import import AnnotationImportState, MEAPredictionImport
"""
- Here we only want to check that the uploads are calling the validation
- Then with unit tests we can check the types of errors raised
Expand All @@ -28,7 +26,7 @@ def test_create_from_url(client, tmp_path, object_predictions,
if p['dataRow']['id'] in model_run_data_rows
]
with file_path.open("w") as f:
ndjson.dump(predictions, f)
parser.dump(predictions, f)

# Needs to have data row ids

Expand Down Expand Up @@ -114,7 +112,7 @@ def test_create_from_local_file(tmp_path, model_run_with_data_rows,
]

with file_path.open("w") as f:
ndjson.dump(predictions, f)
parser.dump(predictions, f)

annotation_import, batch, mal_prediction_import = model_run_with_data_rows.upsert_predictions_and_send_to_project(
name=name,
Expand Down