-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Closed
Labels
Description
Outline & Motivation
I've written the code from the link
import numpy as np
class CocoDNN(L.LightningModule):
def __init__(self):
super().__init__()
self.model = models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights="DEFAULT")
def forward(self, images, targets=None):
return self.model(images, targets)
def training_step(self, batch, batch_idx):
imgs, annot = batch
#print(f"Batch :{batch_idx}")
batch_losses = []
for img_b, annot_b in zip(imgs, annot):
#print(len(img_b), len(annot_b))
if len(img_b) == 0:
continue
loss_dict = self.model(img_b, annot_b)
losses = sum(loss for loss in loss_dict.values())
#print(losses)
batch_losses.append(losses)
batch_mean = torch.mean(torch.stack(batch_losses))
#print(batch_mean)
self.log('train_loss', batch_mean)
#print(imgs[0])
#print(' ----',annot)
#loss_dict = self.model(img_b, annot_b)
#losses = sum(loss for loss in loss_dict.values())
#self.log('train_loss', losses)
return batch_mean
def configure_optimizers(self):
return optim.SGD(self.parameters(), lr=0.001, momentum=0.9, weight_decay=0.0005)
I want to evaluate it using evaluation_step
and testing_step
. Can you guide me the code refactor do that
Images are 512x512 and coco format.
Pitch
No response
Additional context
No response