Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Fixed

- Restore original loaders if replaced by entrypoint ([#8885](https://github.com/PyTorchLightning/pytorch-lightning/pull/8885))

- Fixed `trainer.fit_loop.split_idx` always returning `None` ([#8601](https://github.com/PyTorchLightning/pytorch-lightning/pull/8601))


Expand Down
33 changes: 27 additions & 6 deletions pytorch_lightning/trainer/connectors/data_connector.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Union
from typing import Callable, Optional, Union

import pytorch_lightning as pl
from pytorch_lightning.trainer.supporters import prefetch_iterator
Expand Down Expand Up @@ -117,19 +117,23 @@ def attach_dataloaders(
# functions to overwrite with these implementations
if train_dataloaders is not None:
self.trainer.train_dataloader = None
model.train_dataloader = _PatchDataLoader(train_dataloaders)
train_dataloader = _PatchDataLoader(train_dataloaders, "train")
train_dataloader.patch(model)

if val_dataloaders is not None:
self.trainer.val_dataloaders = None
model.val_dataloader = _PatchDataLoader(val_dataloaders)
val_dataloader = _PatchDataLoader(val_dataloaders, "val")
val_dataloader.patch(model)

if test_dataloaders is not None:
self.trainer.test_dataloaders = None
model.test_dataloader = _PatchDataLoader(test_dataloaders)
test_dataloader = _PatchDataLoader(test_dataloaders, "test")
test_dataloader.patch(model)

if predict_dataloaders is not None:
self.trainer.predict_dataloaders = None
model.predict_dataloader = _PatchDataLoader(predict_dataloaders)
predict_dataloader = _PatchDataLoader(predict_dataloaders, "predict")
predict_dataloader.patch(model)

def attach_datamodule(
self, model: "pl.LightningModule", datamodule: Optional["pl.LightningDataModule"] = None
Expand Down Expand Up @@ -157,6 +161,13 @@ def attach_datamodule(
if hasattr(datamodule, "data_pipeline"):
model.data_pipeline = datamodule.data_pipeline

@staticmethod
def detach_data(model: "pl.LightningModule") -> None:
for stage in ("train", "val", "test", "predict"):
loader = getattr(model, f"{stage}_dataloader", None)
if isinstance(loader, _PatchDataLoader):
loader.unpatch(model)


class _PatchDataLoader:
r"""
Expand All @@ -167,13 +178,23 @@ class _PatchDataLoader:
dataloader: Dataloader object to return when called.
"""

def __init__(self, dataloader: Union[TRAIN_DATALOADERS, EVAL_DATALOADERS]) -> None:
def __init__(self, dataloader: Union[TRAIN_DATALOADERS, EVAL_DATALOADERS], stage: str) -> None:
self.dataloader = dataloader

# cannot pickle __code__ so cannot verify if PatchDataloader
# exists which shows dataloader methods have been overwritten.
# so, we hack it by using the string representation
self.patch_loader_code = str(self.__call__.__code__)
self.old_loader: Optional[Callable] = None
self.stage = stage

def __call__(self) -> Union[TRAIN_DATALOADERS, EVAL_DATALOADERS]:
return self.dataloader

def patch(self, model: "pl.LightningModule") -> None:
self._old_loader = getattr(model, self.stage + "_dataloader")
setattr(model, self.stage + "_dataloader", self)

def unpatch(self, model: "pl.LightningModule") -> None:
setattr(model, self.stage + "_dataloader", self._old_loader)
self._old_loader = None
2 changes: 2 additions & 0 deletions pytorch_lightning/trainer/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1209,6 +1209,8 @@ def _call_teardown_hook(self) -> None:
if self.datamodule is not None:
self.datamodule.teardown(stage=fn)

self.data_connector.detach_data(self.lightning_module)

self.teardown(stage=fn)
self.lightning_module.teardown(stage=fn)

Expand Down
59 changes: 59 additions & 0 deletions tests/trainer/test_data_loading.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,3 +254,62 @@ class CustomSampler(Sampler):
dataloader = CustomDataLoader(dataset, sampler=CustomSampler(dataset))
with pytest.raises(MisconfigurationException, match="will be replaced by `DistributedSampler`"):
trainer.auto_add_sampler(dataloader, shuffle=True)


def test_loader_detaching():
"""Checks that the loader has been resetted after the entrypoint"""

class LoaderTestModel(BoringModel):
def training_step(self, batch, batch_idx):
assert len(model.train_dataloader()) == 10
return super().training_step(batch, batch_idx)

def validation_step(self, batch, batch_idx):
assert len(model.val_dataloader()) == 10
return super().validation_step(batch, batch_idx)

def test_step(self, batch, batch_idx):
assert len(model.test_dataloader()) == 10
return super().test_step(batch, batch_idx)

def predict_step(self, batch, batch_idx, dataloader_idx=None):
assert len(model.predict_dataloader()) == 10
return super().predict_step(batch, batch_idx, dataloader_idx=dataloader_idx)

loader = DataLoader(RandomDataset(32, 10), batch_size=1)

model = LoaderTestModel()

assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert len(model.predict_dataloader()) == 64
assert len(model.test_dataloader()) == 64

trainer = Trainer(fast_dev_run=1)
trainer.fit(model, loader, loader)

assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert len(model.predict_dataloader()) == 64
assert len(model.test_dataloader()) == 64

trainer.validate(model, loader)

assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert len(model.predict_dataloader()) == 64
assert len(model.test_dataloader()) == 64

trainer.predict(model, loader)

assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert len(model.predict_dataloader()) == 64
assert len(model.test_dataloader()) == 64

trainer.test(model, loader)

assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert len(model.predict_dataloader()) == 64
assert len(model.test_dataloader()) == 64