Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .isort.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
line_length = 100
multi_line_output = 3
balanced_wrapping = True
# skip = tools/test_net.py, tools/train_net.py
known_standard_library = setuptools
known_myself = official
known_data_processing = cv2,numpy,scipy,PIL,matplotlib
Expand Down
2 changes: 1 addition & 1 deletion .pylintrc
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
# A comma-separated list of package or module names from where C extensions may
# be loaded. Extensions are loading into the active Python interpreter and may
# run arbitrary code.
extension-pkg-whitelist=['megengine', 'cv2']
extension-pkg-whitelist=['cv2']

# Add files or directories to the blacklist. They should be base names, not
# paths.
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ export PYTHONPATH=/path/to/models:$PYTHONPATH

### 图像分类

图像分类是计算机视觉的基础任务。许多计算机视觉的其它任务(例如物体检测)都使用了基于图像分类的预训练模型。因此,我们提供了各种在ImageNet上预训练好的分类模型,包括[ResNet](./official/vision/classification/resnet)系列, [shufflenet](./official/vision/classification/shufflenet)系列等,这些模型在**ImageNet验证集**上的测试结果如下表:
图像分类是计算机视觉的基础任务。许多计算机视觉的其它任务(例如物体检测)都使用了基于图像分类的预训练模型。因此,我们提供了各种在ImageNet上预训练好的分类模型,包括[ResNet](./official/vision/classification/resnet)系列, [Shufflenet](./official/vision/classification/shufflenet)系列等,这些模型在**ImageNet验证集**上的测试结果如下表:

| 模型 | top1 acc | top5 acc |
| --- | :---: | :---: |
Expand Down Expand Up @@ -91,7 +91,7 @@ export PYTHONPATH=/path/to/models:$PYTHONPATH

### 图像分割

我们也提供了经典的语义分割模型--[DeepLabV3+](./official/vision/segmentation/),这个模型在Pascal VOC2012验证集上的测试结果如下:
我们也提供了经典的语义分割模型[DeepLabV3+](./official/vision/segmentation/),这个模型在Pascal VOC2012验证集上的测试结果如下:

| 模型 | mIoU |
| --- | :--: |
Expand Down
10 changes: 6 additions & 4 deletions official/vision/detection/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,9 @@ python3 tools/test.py -f configs/retinanet_res50_coco_1x_800size.py -n 8 \

## 参考文献

- [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312) Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Dollár, Piotr and Zitnick, C Lawrence, Lin T Y, Maire M, Belongie S, et al. European conference on computer vision. Springer, Cham, 2014: 740-755.
- [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár. Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
- [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497) S. Ren, K. He, R. Girshick, and J. Sun. In: Neural Information Processing Systems(NIPS)(2015).
- [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144) T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 936-944, doi: 10.1109/CVPR.2017.106.
- [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollár. IEEE International Conference on Computer Vision (ICCV), 2017.
- [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497) Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Neural Information Processing Systems (NIPS), 2015.
- [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144) Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan and Serge Belongie. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [FCOS: Fully Convolutional One-Stage Object Detection](https://arxiv.org/abs/1904.01355) Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. IEEE International Conference on Computer Vision (ICCV), 2019.
- [Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection](https://arxiv.org/abs/1912.02424) Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z. Li. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
- [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312) Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. European Conference on Computer Vision (ECCV), 2014.
5 changes: 2 additions & 3 deletions official/vision/segmentation/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

## 介绍

本目录包含了采用MegEngine实现的经典[Deeplabv3plus](https://arxiv.org/abs/1802.02611.pdf)网络结构,同时提供了在Pascal VOC2012和Cityscapes数据集上的完整训练和测试代码。
本目录包含了采用MegEngine实现的经典[DeepLabV3+](https://arxiv.org/abs/1802.02611.pdf)网络结构,同时提供了在Pascal VOC2012和Cityscapes数据集上的完整训练和测试代码。

网络在Pascal VOC2012验证集上的性能和结果如下:

Expand Down Expand Up @@ -102,5 +102,4 @@ python3 tools/test.py -f configs/deeplabv3plus_res101_voc_512size.py -n 8 \

## 参考文献

- [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611.pdf), Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam; ECCV, 2018
- [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611) Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. European Conference on Computer Vision (ECCV), 2018.
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
megengine
numpy
opencv-python
tqdm
Expand Down