Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 4 additions & 5 deletions model2vec/train/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def construct_head(self) -> nn.Sequential:

@classmethod
def from_pretrained(
cls: type[ModelType], out_dim: int = 2, model_name: str = "minishlab/potion-base-8m", **kwargs: Any
cls: type[ModelType], out_dim: int = 2, model_name: str = "minishlab/potion-base-32m", **kwargs: Any
) -> ModelType:
"""Load the model from a pretrained model2vec model."""
model = StaticModel.from_pretrained(model_name)
Expand Down Expand Up @@ -81,10 +81,9 @@ def _encode(self, input_ids: torch.Tensor) -> torch.Tensor:
# Add a small epsilon to avoid division by zero
length = zeros.sum(1) + 1e-16
embedded = self.embeddings(input_ids)
# Simulate actual mean
# Zero out the padding
# Weigh each token
embedded = torch.bmm(w[:, None, :], embedded).squeeze(1)
# embedded = embedded.sum(1)
# Mean pooling by dividing by the length
embedded = embedded / length[:, None]

return nn.functional.normalize(embedded)
Expand All @@ -106,7 +105,7 @@ def tokenize(self, texts: list[str], max_length: int | None = 512) -> torch.Tens
"""
encoded: list[Encoding] = self.tokenizer.encode_batch_fast(texts, add_special_tokens=False)
encoded_ids: list[torch.Tensor] = [torch.Tensor(encoding.ids[:max_length]).long() for encoding in encoded]
return pad_sequence(encoded_ids, batch_first=True)
return pad_sequence(encoded_ids, batch_first=True, padding_value=self.pad_id)

@property
def device(self) -> str:
Expand Down