Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions synthpop/metrics/efficacy_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,15 +76,15 @@ def evaluate(self, real_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> dict:
y_real = real_df[self.target_column]

# Handle categorical encoding only if it's a classification task
if self.task == 'classification':
categorical_cols = X_syn.select_dtypes(include=['object', 'category']).columns.tolist()

categorical_cols = X_syn.select_dtypes(include=['object', 'category']).columns.tolist()

if categorical_cols:
X_syn = pd.get_dummies(X_syn, columns=categorical_cols, drop_first=True)
X_real = pd.get_dummies(X_real, columns=categorical_cols, drop_first=True)
if categorical_cols:
X_syn = pd.get_dummies(X_syn, columns=categorical_cols, drop_first=True)
X_real = pd.get_dummies(X_real, columns=categorical_cols, drop_first=True)

# Align columns in case of different categorical levels between real and synthetic data
X_syn, X_real = X_syn.align(X_real, join='left', axis=1, fill_value=0)
# Align columns in case of different categorical levels between real and synthetic data
X_syn, X_real = X_syn.align(X_real, join='left', axis=1, fill_value=0)

# Model Training and Evaluation
if self.task == 'regression':
Expand Down
2 changes: 1 addition & 1 deletion synthpop/processor/data_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def _preprocess(self, data: pd.DataFrame) -> pd.DataFrame:
data = pd.concat([data, transformed_data], axis=1)

elif dtype == "numerical":
scaler = StandardScaler()
scaler = StandardScaler(with_mean= False, with_std= False)
data[col] = scaler.fit_transform(data[[col]])
self.scalers[col] = scaler

Expand Down