-
Notifications
You must be signed in to change notification settings - Fork 197
[OMNIML-2244] Implement the ONNX quantization exporter for INT4 #575
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
ajrasane
wants to merge
3
commits into
main
Choose a base branch
from
ajrasane/mixed_precision
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+399
−186
Open
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,16 @@ | ||
| # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| """ONNX export utilities.""" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,319 @@ | ||
| # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| """ONNX quantizer exporters.""" | ||
|
|
||
| from abc import ABC, abstractmethod | ||
|
|
||
| import onnx | ||
| from onnx import numpy_helper | ||
|
|
||
| from modelopt.onnx.logging_config import logger | ||
| from modelopt.onnx.quantization.graph_utils import get_tensor_producer_nodes | ||
| from modelopt.onnx.quantization.qdq_utils import cast_initializer_to_dtype | ||
| from modelopt.onnx.quantization.quant_utils import pack_weights_to_int4 | ||
|
|
||
|
|
||
| class ONNXQuantExporter(ABC): | ||
| """Base class for ONNX quantizer exporters.""" | ||
|
|
||
| @staticmethod | ||
| @abstractmethod | ||
| def compute_scales(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Computes the scales for the weights in the ONNX model.""" | ||
|
|
||
| @staticmethod | ||
| @abstractmethod | ||
| def compress_weights(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Compresses the weights in the ONNX model.""" | ||
|
|
||
| @staticmethod | ||
| @abstractmethod | ||
| def post_process(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Post-processes the ONNX model.""" | ||
|
|
||
|
|
||
| # TODO: Implement the MXFP8QuantExporter | ||
| class MXFP8QuantExporter(ONNXQuantExporter): | ||
| """Exporter for MXFP8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compute_scales(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Computes the scales for the weights in the ONNX model for MXFP8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compress_weights(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Compresses the weights in the ONNX model for MXFP8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def post_process(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Post-processes the ONNX model for MXFP8 quantization.""" | ||
|
|
||
|
|
||
| # TODO: Implement the FP8QuantExporter | ||
| class FP8QuantExporter(ONNXQuantExporter): | ||
| """Exporter for FP8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compute_scales(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Computes the scales for the weights in the ONNX model for FP8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compress_weights(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Compresses the weights in the ONNX model for FP8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def post_process(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Post-processes the ONNX model for FP8 quantization.""" | ||
|
|
||
|
|
||
| # TODO: Implement the INT8QuantExporter | ||
| class INT8QuantExporter(ONNXQuantExporter): | ||
| """Exporter for INT8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compute_scales(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Computes the scales for the weights in the ONNX model for INT8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compress_weights(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Compresses the weights in the ONNX model for INT8 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def post_process(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Post-processes the ONNX model for INT8 quantization.""" | ||
|
|
||
|
|
||
| class INT4QuantExporter(ONNXQuantExporter): | ||
| """Exporter for INT4 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compute_scales(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Computes the scales for the weights in the ONNX model for INT4 quantization.""" | ||
| graph = onnx_model.graph | ||
| initializer_map = {initializer.name: initializer for initializer in graph.initializer} | ||
| value_info_map = {value_info.name: value_info for value_info in graph.value_info} | ||
| weight_dq_nodes = [node for node in graph.node if node.op_type == "DequantizeLinear"] | ||
| tensor_producer_map = get_tensor_producer_nodes(graph) | ||
|
|
||
| nodes_to_remove = [] | ||
| for node in weight_dq_nodes: | ||
| weight_name = node.input[0] | ||
| scale_name = node.input[1] | ||
| logger.debug(f"Processing INT4 conversion for weight {weight_name}") | ||
| weight = numpy_helper.to_array(initializer_map[weight_name]) | ||
| if scale_name in initializer_map: | ||
| scale = numpy_helper.to_array(initializer_map[scale_name]) | ||
| else: | ||
| scale_constant_node = tensor_producer_map[scale_name] | ||
| for attr in scale_constant_node.attribute: | ||
| if attr.name == "value": | ||
| tensor = attr.t | ||
| scale = numpy_helper.to_array(tensor) | ||
|
|
||
| weight = weight / scale | ||
| block_size = weight.shape[-1] | ||
|
|
||
| ## Convert DequantizeLinear -> Reshape -> Transpose -> MatMul/Gemm to DequantizeLinear -> Matmul/Gemm | ||
| dq_child_nodes = [n for n in graph.node if node.output[0] in n.input] | ||
| reshape_node = dq_child_nodes[0] | ||
| nodes_to_remove.append(reshape_node.name) | ||
| assert reshape_node.op_type == "Reshape", f"Expected Reshape node for {node.name}" | ||
| reshape_node_output = reshape_node.output[0] | ||
|
|
||
| # Remove constant node from reshape node | ||
| shape_constant_name = next(input for input in reshape_node.input if "Constant" in input) | ||
| nodes_to_remove.append(tensor_producer_map[shape_constant_name].name) | ||
|
|
||
| # Get the shape of the output of the reshape node | ||
| reshape_output_value_info = value_info_map.get(reshape_node_output) | ||
| if reshape_output_value_info is not None: | ||
| weight_shape = [ | ||
| dim.dim_value for dim in reshape_output_value_info.type.tensor_type.shape.dim | ||
| ] | ||
| else: | ||
| raise ValueError(f"Unable to determine shape of weight tensor {weight_name}") | ||
|
|
||
| # Reshape weights and scales | ||
| weight = weight.reshape(weight_shape) | ||
| assert weight_shape[-1] % block_size == 0, ( | ||
| f"Block size {block_size} is not divisible by {weight_shape[-1]}" | ||
| ) | ||
| scale_shape = [*weight_shape[:-1], weight_shape[-1] // block_size] | ||
| scale = scale.reshape(scale_shape) | ||
| reshape_child_nodes = [n for n in graph.node if reshape_node.output[0] in n.input] | ||
| assert len(reshape_child_nodes) == 1, f"Expected exactly one child node for {node.name}" | ||
|
|
||
| # Check if there's an optional Cast node between Reshape and Transpose/MatMul/Gemm | ||
| next_node = reshape_child_nodes[0] | ||
| if next_node.op_type == "Cast": | ||
| # Remove unnecessary Cast node | ||
| cast_node = next_node | ||
| nodes_to_remove.append(cast_node.name) | ||
| cast_child_nodes = [n for n in graph.node if cast_node.output[0] in n.input] | ||
| next_node = cast_child_nodes[0] | ||
|
|
||
| # Transpose weights and scales if present | ||
| if next_node.op_type == "Transpose": | ||
| transpose_node = next_node | ||
| nodes_to_remove.append(transpose_node.name) | ||
| assert transpose_node.op_type == "Transpose", ( | ||
| f"Expected Transpose node for {node.name}" | ||
| ) | ||
|
Comment on lines
+161
to
+174
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we move the node removal logic to the |
||
| perm = None | ||
| for attr in transpose_node.attribute: | ||
| if attr.name == "perm": | ||
| perm = [x for x in attr.ints] # noqa: C416 | ||
| assert perm is not None, f"Permutation not found for {node.name}" | ||
| weight = weight.transpose(perm) | ||
| scale = scale.transpose(perm) | ||
| transpose_child_nodes = [ | ||
| n for n in graph.node if transpose_node.output[0] in n.input | ||
| ] | ||
| # transpose_node.input = [] | ||
| assert len(transpose_child_nodes) == 1, ( | ||
| f"Expected exactly one matmul node for {node.name}" | ||
| ) | ||
| matmul_node = transpose_child_nodes[0] | ||
| else: | ||
| matmul_node = next_node | ||
| assert matmul_node.op_type in ["MatMul", "Gemm"], ( | ||
| f"Expected MatMul or Gemm node for {node.name}" | ||
| ) | ||
| matmul_node.input[1] = node.output[0] | ||
|
|
||
| if scale_name not in initializer_map: | ||
| # Remove scale producer if it's a Constant node | ||
| scale_name = node.input[1] | ||
| scale_producer = tensor_producer_map[scale_name] | ||
| if scale_producer.op_type == "Constant": | ||
| graph.node.remove(scale_producer) | ||
|
|
||
| # Create a new scale tensor | ||
| scale_name = scale_name.replace("Constant_output_0", "scale") | ||
| scale_tensor = onnx.numpy_helper.from_array(scale, scale_name) | ||
| graph.initializer.append(scale_tensor) | ||
| node.input[1] = scale_name | ||
| else: | ||
| scale_tensor = onnx.numpy_helper.from_array(scale, scale_name) | ||
| initializer_map[scale_name].CopyFrom(scale_tensor) | ||
|
|
||
| weight = numpy_helper.from_array(weight, weight_name) | ||
| initializer_map[weight_name].CopyFrom(weight) | ||
| logger.debug(f"Computed scales for weight {weight_name} for INT4 quantization") | ||
|
|
||
| # Remove transpose and reshape nodes | ||
| new_nodes = [node for node in graph.node if node.name not in nodes_to_remove] | ||
| del graph.node[:] | ||
| graph.node.extend(new_nodes) | ||
|
|
||
| return onnx_model | ||
|
|
||
| @staticmethod | ||
| def compress_weights(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Compresses the weights in the ONNX model for INT4 quantization.""" | ||
| graph = onnx_model.graph | ||
| initializer_map = {initializer.name: initializer for initializer in graph.initializer} | ||
| weight_dq_nodes = [node for node in graph.node if node.op_type == "DequantizeLinear"] | ||
|
|
||
| for node in weight_dq_nodes: | ||
| weight_name = node.input[0] | ||
| weight = numpy_helper.to_array(initializer_map[weight_name]) | ||
| weight_shape = weight.shape | ||
| weights_int4_np = pack_weights_to_int4(weight) | ||
| weights_int4_onnx = onnx.numpy_helper.from_array(weights_int4_np, weight_name) | ||
| weights_int4_onnx.data_type = onnx.TensorProto.INT4 | ||
| weights_int4_onnx.dims[0] = weight_shape[0] | ||
| initializer_map[weight_name].CopyFrom(weights_int4_onnx) | ||
| logger.debug(f"Converted {weight_name} to INT4 precision") | ||
|
|
||
| return onnx_model | ||
|
|
||
| @staticmethod | ||
| def post_process(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Post-processes the ONNX model for INT4 quantization.""" | ||
|
|
||
| def is_pre_quant_scale_node(node: onnx.NodeProto) -> bool: | ||
| has_pqs_input = any(input for input in node.input if "_pre_quant_scale" in input) | ||
| return node.op_type == "Mul" and has_pqs_input | ||
|
|
||
| graph = onnx_model.graph | ||
| initializer_map = {initializer.name: initializer for initializer in graph.initializer} | ||
| nodes_to_remove = [] | ||
|
|
||
| def is_fp32_cast(node: onnx.NodeProto) -> bool: | ||
| return node.op_type == "Cast" and any( | ||
| attr.name == "to" and attr.i == onnx.TensorProto.FLOAT for attr in node.attribute | ||
| ) | ||
|
|
||
| # Remove Cast nodes after specific operators | ||
| for node in graph.node: | ||
| if node.op_type in ["Transpose", "Reshape", "Sqrt", "Add", "Gelu"]: | ||
| child_nodes = [n for n in graph.node if node.output[0] in n.input] | ||
| if len(child_nodes) == 1 and is_fp32_cast(child_nodes[0]): | ||
| cast_node = child_nodes[0] | ||
| node.output.clear() | ||
| node.output.extend(cast_node.output) | ||
| nodes_to_remove.append(cast_node.name) | ||
|
|
||
| # Remove unnecessay Cast after Pre-quant scale | ||
| for node in graph.node: | ||
| if is_pre_quant_scale_node(node): | ||
| pqs_child_nodes = [n for n in graph.node if node.output[0] in n.input] | ||
| assert len(pqs_child_nodes) == 1, f"Expected exactly one child node for {node.name}" | ||
| cast_node = pqs_child_nodes[0] | ||
| assert cast_node.op_type == "Cast", f"Expected Cast node for {node.name}" | ||
| node.output.clear() | ||
| node.output.extend(cast_node.output) | ||
| nodes_to_remove.append(cast_node.name) | ||
|
|
||
| # Remove unnecessary casts | ||
| new_nodes = [node for node in graph.node if node.name not in nodes_to_remove] | ||
| del graph.node[:] | ||
| graph.node.extend(new_nodes) | ||
|
|
||
| # Cast bias to float16 | ||
| for node in graph.node: | ||
| if node.op_type == "Add" and "proj/Add" in node.name: | ||
| cast_initializer_to_dtype(node, "Half", initializer_map) | ||
|
|
||
| # Cast pre quant scales of o_proj and down_proj to float16 | ||
| for node in graph.node: | ||
| if node.op_type == "Mul" and ( | ||
| any( | ||
| x in node.name | ||
| for x in ("o_proj/input_quantizer/Mul", "down_proj/input_quantizer/Mul") | ||
| ) | ||
| ): | ||
| cast_initializer_to_dtype(node, "Half", initializer_map) | ||
|
|
||
| return onnx_model | ||
|
|
||
|
|
||
| # TODO: Implement the NVFP4QuantExporter | ||
| class NVFP4QuantExporter(ONNXQuantExporter): | ||
| """Exporter for NVFP4 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compute_scales(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Computes the scales for the weights in the ONNX model for NVFP4 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def compress_weights(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Compresses the weights in the ONNX model for NVFP4 quantization.""" | ||
|
|
||
| @staticmethod | ||
| def post_process(onnx_model: onnx.ModelProto) -> onnx.ModelProto: | ||
| """Post-processes the ONNX model for NVFP4 quantization.""" | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I realize it's copied from the previous implementation in
quantize_weights_to_int4, but I wonder how much of this code can be reused for the other quantization types. Most of it looks non-specific to int4.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Currently we have this function for MXFP8, and this function for NVFP4
Ill try to see if we can reuse some functionality from INT4 while implementing these functions as exporters.