This repository was archived by the owner on Jun 10, 2024. It is now read-only.

Description
The problem is that when I add resnet or yolo to VPF as a thread, I find that GPU increases rapidly until out of memory. The code is:
class VPF_decode_inference(object):
def run(self):
self.rtsp_list = ["rtmp://192.168.1.229/live/mytest",]
# cuda.init()
decode_thread_pool = []
gpu_id = 0
yolo_thread_pool = []
for i in range(0, 25):
thread = Thread(target = VPF_decode_inference.decode,args=[self,gpu_id, "rtmp://192.168.1.229/live/mytest",i])
thread.start()
decode_thread_pool.append(thread)
for thread in decode_thread_pool:
thread.join()
for i in range(1):
vpf_yolo_obj = yolo_inference(gpu_id)
yolo_thread = Thread(target = yolo_inference.inference,args=[vpf_yolo_obj])
yolo_thread.start()
yolo_thread.join()
class yolo_inference(object):
pass
if __name__ == "__main__":
gpu_id = 0
for i in range(1):
vpf_decode = VPF_decode_inference(0)
p = Process(target=VPF_decode_inference.run,args=(vpf_decode,))
p.start()
time.sleep()