Reference: M. Devanne, M. Ismail-Fawaz et al., “LiTE: Lightweight Inception Time for Time Series,” DSAA 2023. Paper: https://maxime-devanne.com/delegation/publis/ismail-fawaz_dsaa2023.pdf
This repo provides a PyTorch implementation of LiTE and simple training/inference scripts on UCR datasets (example: PhalangesOutlinesCorrect in data/).
- Create/activate venv
cd /Users/quentinpour/python/LiTE_pytorch python3 -m venv .venv source .venv/bin/activate pip install -e . # or: pip install -r requirements.txt
- Train on the provided dataset
python train.py --dataset PhalangesOutlinesCorrect --epochs 20 --batch-size 32
- Inspect quick predictions (printed after training) and optional model save (
--save-path model.pth).
src/lite.py: LiTE model.src/layers/*: Inception, hybrid, and FCN modules.train.py: Data loading, training loop, and simple inference.utils/utils.py,utils/trainer.py: datasets, normalization, training helpers.
train.pyexpects UCR-format files underdata/<dataset>/<dataset>_TRAIN.txtand_TEST.txt.- Loss is cross-entropy on the model’s softmax output (
CrossEntropyFromProbswrapper). Adjust flags (filters, dilation) via CLI args.***