Skip to content

QMoayedpour/LiTE_pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LiTE (Lightweight Inception Time for Time Series)

Reference: M. Devanne, M. Ismail-Fawaz et al., “LiTE: Lightweight Inception Time for Time Series,” DSAA 2023. Paper: https://maxime-devanne.com/delegation/publis/ismail-fawaz_dsaa2023.pdf

This repo provides a PyTorch implementation of LiTE and simple training/inference scripts on UCR datasets (example: PhalangesOutlinesCorrect in data/).

Quickstart

  1. Create/activate venv
    cd /Users/quentinpour/python/LiTE_pytorch
    python3 -m venv .venv
    source .venv/bin/activate
    pip install -e .          # or: pip install -r requirements.txt
  2. Train on the provided dataset
    python train.py --dataset PhalangesOutlinesCorrect --epochs 20 --batch-size 32
  3. Inspect quick predictions (printed after training) and optional model save (--save-path model.pth).

Key Files

  • src/lite.py: LiTE model.
  • src/layers/*: Inception, hybrid, and FCN modules.
  • train.py: Data loading, training loop, and simple inference.
  • utils/utils.py, utils/trainer.py: datasets, normalization, training helpers.

Notes

  • train.py expects UCR-format files under data/<dataset>/<dataset>_TRAIN.txt and _TEST.txt.
  • Loss is cross-entropy on the model’s softmax output (CrossEntropyFromProbs wrapper). Adjust flags (filters, dilation) via CLI args.***

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages