@@ -15,15 +15,6 @@ kernelspec:
1515:depth: 2
1616```
1717
18- In addition to what's in Anaconda, this lecture will require the following library:
19-
20- ``` {code-cell} ipython
21- ---
22- tags: [hide-output]
23- ---
24- !pip install interpolation
25- ```
26-
2718## Overview
2819
2920In this lecture we continue the study of {doc}` the cake eating problem <cake_eating_problem> ` .
@@ -47,9 +38,7 @@ We will use the following imports:
4738
4839``` {code-cell} ipython
4940import matplotlib.pyplot as plt
50- plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
5141import numpy as np
52- from interpolation import interp
5342from scipy.optimize import minimize_scalar, bisect
5443```
5544
@@ -211,7 +200,7 @@ class CakeEating:
211200 """
212201
213202 u, β = self.u, self.β
214- v = lambda x: interp(self.x_grid, v_array, x )
203+ v = lambda x: np. interp(x, self.x_grid, v_array)
215204
216205 return u(c) + β * v(x - c)
217206```
@@ -533,7 +522,7 @@ class OptimalGrowth(CakeEating):
533522 """
534523
535524 u, β, α = self.u, self.β, self.α
536- v = lambda x: interp(self.x_grid, v_array, x )
525+ v = lambda x: np. interp(x, self.x_grid, v_array)
537526
538527 return u(c) + β * v((x - c)**α)
539528```
@@ -609,7 +598,7 @@ def K(σ_array, ce):
609598 u_prime, β, x_grid = ce.u_prime, ce.β, ce.x_grid
610599 σ_new = np.empty_like(σ_array)
611600
612- σ = lambda x: interp(x_grid, σ_array, x )
601+ σ = lambda x: np. interp(x, x_grid, σ_array )
613602
614603 def euler_diff(c, x):
615604 return u_prime(c) - β * u_prime(σ(x - c))
0 commit comments