Skip to content

Conversation

@nisha617
Copy link
Collaborator

@nisha617 nisha617 commented Aug 15, 2025

This PR updates the translation in lln_clt.

@netlify
Copy link

netlify bot commented Aug 15, 2025

Deploy Preview for astonishing-narwhal-a8fc64 ready!

Name Link
🔨 Latest commit 6ca48ab
🔍 Latest deploy log https://app.netlify.com/projects/astonishing-narwhal-a8fc64/deploys/68a1b31d1beb450008f4dd80
😎 Deploy Preview https://deploy-preview-49--astonishing-narwhal-a8fc64.netlify.app
📱 Preview on mobile
Toggle QR Code...

QR Code

Use your smartphone camera to open QR code link.

To edit notification comments on pull requests, go to your Netlify project configuration.

@github-actions
Copy link

github-actions bot commented Aug 15, 2025

@github-actions github-actions bot temporarily deployed to pull request August 15, 2025 13:01 Inactive
@github-actions github-actions bot temporarily deployed to pull request August 16, 2025 12:43 Inactive
@mmcky mmcky requested a review from Copilot August 16, 2025 23:05
Copy link

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR improves Chinese translations in the Law of Large Numbers and Central Limit Theorem lecture. The changes focus on enhancing clarity and mathematical precision in the Chinese text.

  • Corrects grammatical flow in the description of random vectors and matrices
  • Expands the explanation of the continuous mapping theorem with more precise mathematical definition

Tip: Customize your code reviews with copilot-instructions.md. Create the file or learn how to get started.
You can also share your feedback on Copilot code review for a chance to win a $100 gift card. Take the survey.

$$

其次,根据[连续映射定理](https://en.wikipedia.org/wiki/Continuous_mapping_theorem),如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
其次,连续映射定理指出, 如果$g(\cdot)$是一个连续函数, 且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
Copy link

Copilot AI Aug 16, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are inconsistent spacing issues around punctuation in the Chinese text. There should be no space before commas (, should be ,) and the spacing around mathematical notation should be consistent.

Suggested change
其次,连续映射定理指出, 如果$g(\cdot)$是一个连续函数, 且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
其次,连续映射定理指出,如果$g(\cdot)$是一个连续函数,且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么

Copilot uses AI. Check for mistakes.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@nisha617 if you agree with this -- you can select Commit suggestion, but feel free to ignore it if it isn't of value -- just click Resolve conversation. Thanks.

@github-actions github-actions bot temporarily deployed to pull request August 17, 2025 10:56 Inactive
@nisha617 nisha617 merged commit f60d5d8 into main Aug 17, 2025
6 checks passed
@nisha617 nisha617 deleted the lln_clt branch August 17, 2025 12:49
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants