|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pyplot as plt |
| 3 | + |
| 4 | +# Sample Data (Height vs. Weight, for example) |
| 5 | +# X represents height in cm, Y represents weight in kg |
| 6 | +X = np.array([150, 160, 170, 180, 190]) |
| 7 | +Y = np.array([50, 60, 65, 70, 80]) |
| 8 | +n = len(X) |
| 9 | + |
| 10 | +# Mean of X and Y |
| 11 | +mean_x = np.mean(X) |
| 12 | +mean_y = np.mean(Y) |
| 13 | + |
| 14 | +# Calculating the coefficients for Linear Regression |
| 15 | +numerator = np.sum((X - mean_x) * (Y - mean_y)) # Σ((Xi - X̄) * (Yi - Ȳ)) |
| 16 | +denominator = np.sum((X - mean_x) ** 2) # Σ((Xi - X̄)^2) |
| 17 | + |
| 18 | +# Slope (m) and Intercept (b) for y = mx + b |
| 19 | +m = numerator / denominator # Slope |
| 20 | +b = mean_y - (m * mean_x) # Intercept |
| 21 | + |
| 22 | +print(f"Slope (m): {m}") |
| 23 | +print(f"Intercept (b): {b}") |
| 24 | + |
| 25 | +# Prediction using the regression model |
| 26 | +def predict(x): |
| 27 | + return m * x + b |
| 28 | + |
| 29 | +# Predicted values for X |
| 30 | +Y_pred = predict(X) |
| 31 | + |
| 32 | +# Plotting the results |
| 33 | +plt.scatter(X, Y, color="blue", label="Data Points") # Plot original data points |
| 34 | +plt.plot(X, Y_pred, color="red", label="Regression Line") # Plot regression line |
| 35 | + |
| 36 | +plt.xlabel("Height (cm)") |
| 37 | +plt.ylabel("Weight (kg)") |
| 38 | +plt.title("Linear Regression Example") |
| 39 | +plt.legend() |
| 40 | + |
| 41 | +# Save the plot as an image file |
| 42 | +plt.savefig("linear_regression_plot.png") |
| 43 | +print("Plot saved as 'linear_regression_plot.png'") |
0 commit comments