|
30 | 30 | }, |
31 | 31 | { |
32 | 32 | "cell_type": "code", |
33 | | - "execution_count": 77, |
| 33 | + "execution_count": 85, |
34 | 34 | "metadata": {}, |
35 | 35 | "outputs": [], |
36 | 36 | "source": [ |
|
40 | 40 | }, |
41 | 41 | { |
42 | 42 | "cell_type": "code", |
43 | | - "execution_count": 78, |
| 43 | + "execution_count": 86, |
44 | 44 | "metadata": {}, |
45 | 45 | "outputs": [], |
46 | 46 | "source": [ |
47 | 47 | "# image = \"./images/test1.jpg\"\n", |
48 | | - "image = \"./images/test2-nored.jpg\"\n", |
49 | | - "highlighted_image = \"./images/test2.jpg\"\n", |
50 | | - "output = \"./images/removed2.png\"" |
| 48 | + "image = \"./images/test3-nored.jpg\"\n", |
| 49 | + "highlighted_image = \"./images/test3.jpg\"\n", |
| 50 | + "output = \"./images/removed3.png\"" |
51 | 51 | ] |
52 | 52 | }, |
53 | 53 | { |
54 | 54 | "cell_type": "code", |
55 | | - "execution_count": 79, |
| 55 | + "execution_count": 87, |
56 | 56 | "metadata": {}, |
57 | 57 | "outputs": [], |
58 | 58 | "source": [ |
|
81 | 81 | }, |
82 | 82 | { |
83 | 83 | "cell_type": "code", |
84 | | - "execution_count": 80, |
| 84 | + "execution_count": 89, |
85 | 85 | "metadata": {}, |
86 | 86 | "outputs": [], |
87 | 87 | "source": [ |
|
91 | 91 | "# test1 \n", |
92 | 92 | "# x, y, w, h = 600, 1400, 250, 35 \n", |
93 | 93 | "# test2 \n", |
94 | | - "x, y, w, h = 580, 1480, 470, 70 \n", |
| 94 | + "x, y, w, h = 50, 1480, 470, 70 \n", |
95 | 95 | "# test3 \n", |
96 | 96 | "# x, y, w, h = 600, 1400, 250, 35 \n", |
97 | 97 | "\n", |
|
129 | 129 | }, |
130 | 130 | { |
131 | 131 | "cell_type": "code", |
132 | | - "execution_count": 81, |
| 132 | + "execution_count": 90, |
133 | 133 | "metadata": {}, |
134 | 134 | "outputs": [], |
135 | 135 | "source": [ |
|
144 | 144 | }, |
145 | 145 | { |
146 | 146 | "cell_type": "code", |
147 | | - "execution_count": 82, |
| 147 | + "execution_count": 91, |
148 | 148 | "metadata": {}, |
149 | 149 | "outputs": [], |
150 | 150 | "source": [ |
|
173 | 173 | }, |
174 | 174 | { |
175 | 175 | "cell_type": "code", |
176 | | - "execution_count": 83, |
| 176 | + "execution_count": 92, |
177 | 177 | "metadata": {}, |
178 | 178 | "outputs": [], |
179 | 179 | "source": [ |
|
201 | 201 | "\n", |
202 | 202 | " display(\"Output2\", fI)\n", |
203 | 203 | "\n", |
204 | | - " # predict the color from the left and top neighbor \n", |
| 204 | + " # predict the color from the left and top neighbor \n", |
205 | 205 | " for row in range(y, y+h):\n", |
206 | 206 | " for col in range(x, x+w):\n", |
207 | 207 | " if fI[row, col][0] == 0 and fI[row, col][1] == 0 and fI[row, col][2] == 0:\n", |
|
211 | 211 | "\n", |
212 | 212 | " display(\"Output test\", fI)\n", |
213 | 213 | "\n", |
| 214 | + " # blur again \n", |
214 | 215 | " fI[y:y+h, x:x+w, :] = cv.medianBlur(fI[y:y+h, x:x+w, :], 7) \n", |
215 | 216 | " fI[fI<0] = 0\n", |
216 | 217 | " fI[fI>255] = 255\n", |
|
222 | 223 | }, |
223 | 224 | { |
224 | 225 | "cell_type": "code", |
225 | | - "execution_count": 84, |
| 226 | + "execution_count": 93, |
226 | 227 | "metadata": { |
227 | 228 | "tags": [] |
228 | 229 | }, |
|
0 commit comments