Skip to content

Commit eb0bf0c

Browse files
authored
correct typos (#17)
1 parent a0f9d21 commit eb0bf0c

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,8 @@ Due to use only basic libralies (scipy, numpy), this library is easy to extend f
1717
|:----------|:---------------: |:----------------:|:----------------:|:----------------:|:----------------:|
1818
| Linear Model Predictive Control (MPC) || x | x | x | x |
1919
| Cross Entropy Method (CEM) ||| x | x | x |
20-
| Model Preidictive Path Integral Control of Nagabandi, A. (MPPI) ||| x | x | x |
21-
| Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams) ||| x | x | x |
20+
| Model Predictive Path Integral Control of Nagabandi, A. (MPPI) ||| x | x | x |
21+
| Model Predictive Path Integral Control of Williams, G. (MPPIWilliams) ||| x | x | x |
2222
| Random Shooting Method (Random) ||| x | x | x |
2323
| Iterative LQR (iLQR) | x || x || x |
2424
| Differential Dynamic Programming (DDP) | x || x |||
@@ -36,10 +36,10 @@ Following algorithms are implemented in PythonLinearNonlinearControl
3636
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
3737
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
3838
- [script](PythonLinearNonlinearControl/controllers/cem.py)
39-
- [Model Preidictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
39+
- [Model Predictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
4040
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
4141
- [script](PythonLinearNonlinearControl/controllers/mppi.py)
42-
- [Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
42+
- [Model Predictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
4343
- Ref: Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., & Theodorou, E. A. (2017, May). Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1714-1721). IEEE.
4444
- [script](PythonLinearNonlinearControl/controllers/mppi_williams.py)
4545
- [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114)

0 commit comments

Comments
 (0)