Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions examples/conformer/tflite_subword_conformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,9 @@

concrete_func = conformer.make_tflite_function(greedy=True).get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.experimental_new_converter = True
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
tf.lite.OpsSet.SELECT_TF_OPS]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()

if not os.path.exists(os.path.dirname(args.output)):
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@

setuptools.setup(
name="TensorFlowASR",
version="0.5.1",
version="0.5.2",
author="Huy Le Nguyen",
author_email="nlhuy.cs.16@gmail.com",
description="Almost State-of-the-art Automatic Speech Recognition using Tensorflow 2",
Expand Down
54 changes: 16 additions & 38 deletions tensorflow_asr/models/transducer.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,73 +417,51 @@ def __perform_greedy(self,
with tf.name_scope(f"{self.name}_greedy"):
time = tf.constant(0, dtype=tf.int32)
total = encoded_length
# Initialize prediction with a blank
# Prediction can not be longer than the encoded of audio plus blank
prediction = tf.TensorArray(
dtype=tf.int32,
size=(total + 1),
dynamic_size=False,
element_shape=tf.TensorShape([]),
clear_after_read=False
)

hypothesis = Hypothesis(
index=tf.constant(0, dtype=tf.int32),
prediction=prediction.write(0, predicted),
prediction=tf.ones([total + 1], dtype=tf.int32) * self.text_featurizer.blank,
states=states
)

def condition(time, total, encoded, hypothesis): return tf.less(time, total)

def body(time, total, encoded, hypothesis):
predicted = tf.gather_nd(hypothesis.prediction, tf.expand_dims(hypothesis.index, axis=-1))

ytu, new_states = self.decoder_inference(
# avoid using [index] in tflite
encoded=tf.gather_nd(encoded, tf.expand_dims(time, axis=-1)),
predicted=hypothesis.prediction.read(hypothesis.index),
predicted=predicted,
states=hypothesis.states
)
char = tf.argmax(ytu, axis=-1, output_type=tf.int32) # => argmax []

index, char, new_states = tf.cond(
tf.equal(char, self.text_featurizer.blank),
true_fn=lambda: (
hypothesis.index,
hypothesis.prediction.read(hypothesis.index),
hypothesis.states
),
false_fn=lambda: (
hypothesis.index + 1,
char,
new_states
)
new_predicted = tf.argmax(ytu, axis=-1, output_type=tf.int32) # => argmax []

index, new_predicted, new_states = tf.cond(
tf.equal(new_predicted, self.text_featurizer.blank),
true_fn=lambda: (hypothesis.index, predicted, hypothesis.states),
false_fn=lambda: (hypothesis.index + 1, new_predicted, new_states)
)

hypothesis = Hypothesis(
index=index,
prediction=hypothesis.prediction.write(index, char),
prediction=tf.tensor_scatter_nd_update(
hypothesis.prediction,
indices=tf.reshape(index, [1, 1]),
updates=tf.expand_dims(new_predicted, axis=-1)
),
states=new_states
)

return time + 1, total, encoded, hypothesis

time, total, encoded, hypothesis = tf.while_loop(
condition,
body,
condition, body,
loop_vars=(time, total, encoded, hypothesis),
parallel_iterations=parallel_iterations,
swap_memory=swap_memory
)

# Gather predicted sequence
hypothesis = Hypothesis(
index=hypothesis.index,
prediction=tf.gather_nd(
params=hypothesis.prediction.stack(),
indices=tf.expand_dims(tf.range(hypothesis.index + 1), axis=-1)
),
states=hypothesis.states
)

return hypothesis

# -------------------------------- BEAM SEARCH -------------------------------------
Expand Down