Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions src/main/java/com/thealgorithms/maths/SmithNumber.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
package com.thealgorithms.maths;

import com.thealgorithms.maths.Prime.PrimeCheck;

/**
* In number theory, a smith number is a composite number for which, in a given number base,
* the sum of its digits is equal to the sum of the digits in its prime factorization in the same base.
*
* For example, in base 10, 378 = 21 X 33 X 71 is a Smith number since 3 + 7 + 8 = 2 X 1 + 3 X 3 + 7 X 1,
* and 22 = 21 X 111 is a Smith number, because 2 + 2 = 2 X 1 + (1 + 1) X 1.
*
* Wiki: https://en.wikipedia.org/wiki/Smith_number
*/
public final class SmithNumber {

private SmithNumber() {
}

private static int primeFactorDigitSum(int n) {
int sum = 0;
int num = n;

// Factorize the number using trial division
for (int i = 2; i * i <= num; i++) {
while (n % i == 0) { // while i divides n
sum += SumOfDigits.sumOfDigits(i); // add sum of digits of factor
n /= i; // divide n by the factor
}
}

// If n is still > 1, it itself is a prime factor
if (n > 1) {
sum += SumOfDigits.sumOfDigits(n);
}

return sum;
}

/**
* Check if {@code number} is Smith number or not
*
* @param number the number
* @return {@code true} if {@code number} is a Smith number, otherwise false
*/
public static boolean isSmithNumber(int number) {
if (PrimeCheck.isPrime(number)) {
return false; // Smith numbers must be composite
}

return SumOfDigits.sumOfDigits(number) == primeFactorDigitSum(number);
}
}
22 changes: 22 additions & 0 deletions src/test/java/com/thealgorithms/maths/SmithNumberTest.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
package com.thealgorithms.maths;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;

class SmithNumberTest {

@ParameterizedTest
@CsvSource({"4", "22", "121", "562", "985", "4937775"})
void positiveSmithNumbersTest(int n) {
assertTrue(SmithNumber.isSmithNumber(n));
}

@ParameterizedTest
@CsvSource({"2", "11", "100", "550", "999", "1234557"})
void negativeSmithNumbersTest(int n) {
assertFalse(SmithNumber.isSmithNumber(n));
}
}