Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 121 additions & 0 deletions maths/brent_method.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
from collections.abc import Callable


def brent_method(
func: Callable[[float], float],
left: float,
right: float,
tol: float = 1e-8,
max_iter: int = 100,
) -> float:
"""
Find the root of function func in the interval [left, right] using Brent's Method.

Brent's Method combines bisection, secant, and inverse quadratic interpolation.


Parameters
----------
func : Callable[[float], float]
Function for which to find the root.
left : float
Left endpoint of interval.
right : float
Right endpoint of interval.
tol : float
Tolerance for convergence (default 1e-8).
max_iter : int
Maximum number of iterations (default 100).


Returns
-------
float
Approximate root of func in [left, right].

Raises
------
ValueError
If func(left) and func(right) do not have opposite signs.

Examples
--------
>>> def f(x): return x**3 - x - 2
>>> round(brent_method(f, 1, 2), 5)
1.52138

>>> def f2(x): return x**2 + 1
>>> brent_method(f2, 0, 1)
Traceback (most recent call last):
...
ValueError: func(left) and func(right) must have opposite signs
"""
fl = func(left)
fr = func(right)

if fl * fr >= 0:
raise ValueError("func(left) and func(right) must have opposite signs")

if abs(fl) < abs(fr):
left, right = right, left
fl, fr = fr, fl

c = left
fc = fl
d = right - left

for iteration in range(max_iter):
if fr == 0:
return right

if fc not in (fl, fr):
# Inverse quadratic interpolation
s = (
left * fr * fc / ((fl - fr) * (fl - fc))
+ right * fl * fc / ((fr - fl) * (fr - fc))
+ c * fl * fr / ((fc - fl) * (fc - fr))
)
else:
# Secant method
s = right - fr * (right - left) / (fr - fl)

conditions = [
not ((3 * left + right) / 4 < s < right)
if right > left
else not (right < s < (3 * left + right) / 4),
iteration > 1 and abs(s - right) >= abs(right - c) / 2,
iteration <= 1 and abs(s - right) >= abs(c - d) / 2,
iteration > 1 and abs(right - c) < tol,
iteration <= 1 and abs(c - d) < tol,
]

if any(conditions):
# Bisection fallback
s = (left + right) / 2
d = right - left

fs = func(s)
d, c = c, right
fc = fr

if fl * fs < 0:
right = s
fr = fs
else:
left = s
fl = fs

if abs(fl) < abs(fr):
left, right = right, left
fl, fr = fr, fl

if abs(right - left) < tol:
return right

return right


if __name__ == "__main__":
import doctest

doctest.testmod(verbose=True)