Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions LabRab2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import root_mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler

df = pd.read_csv("processed_titanic.csv")
X = df[['PassengerId']]
y = df['Age']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.4, random_state=42)

linear_model = LinearRegression()

linear_model.fit(X_train, y_train)

y_pred_test = linear_model.predict(X_test)

print("Оценка регресии")
MSE = mean_squared_error(y_test, y_pred_test)
print(MSE)
RMSE = root_mean_squared_error(y_test, y_pred_test)
print(RMSE)
MAE = mean_absolute_error(y_test, y_pred_test)
print(MAE)

X1 = df[['PassengerId']]
y1 = df['VIP']

X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.4, random_state=42)
X1_test, X1_val, y1_test, y1_val = train_test_split(X1_test, y1_test, test_size=0.4, random_state=42)

scaler = StandardScaler()
X1_train_scaled = scaler.fit_transform(X1_train)
X1_test_scaled = scaler.transform(X1_test)

logreg_model = LogisticRegression(max_iter=1000, random_state=42)
logreg_model.fit(X1_train_scaled, y1_train)
y1_pred_test = logreg_model.predict(X1_test_scaled)

accuracy = accuracy_score(y1_test, y1_pred_test)
print("Точность: " , accuracy)



cm = confusion_matrix(y1_test, y1_pred_test)
print(cm)

plt.figure(figsize=(4, 3))
sns.heatmap(cm, annot=True, fmt='d', cmap='bwr')
plt.title('Confusion matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
plt.show()