A clean Python environment for financial machine learning research and analysis.
- Python 3.11 or higher
- pip (Python package installer)
-
Create a virtual environment (recommended):
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts�ctivate
-
Install dependencies:
pip install -r requirements.txt
-
Start Jupyter Notebook:
jupyter notebook
- Data Science: numpy, pandas, matplotlib, scikit-learn, statsmodels
- Financial Data: yfinance
- Deep Learning: torch
- Visualization: seaborn, plotly
- Scientific Computing: scipy
- Development: jupyter, notebook
finance-ml-lab/
├── datasets/ # Store your datasets here
├── notes/ # Research notes and documentation
├── projects/ # Individual ML projects
├── requirements.txt # Python dependencies
└── README.md # This file
- Navigate to the
projects/directory - Create a new Jupyter notebook for your analysis
- Import the libraries you need and start exploring!
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
# Download stock data
data = yf.download('AAPL', start='2020-01-01', end='2023-01-01')
print(data.head())