pip install .or
- Create a Personal Access Token :
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token- Run
pip install git+https://<PERSONAL ACCESS TOKEN>@github.com/saamaresearch/TGAN_tf.git@packagingTune the parameters at train.py for intensive training
PARAMS = {
"max_epoch":5,
"steps_per_epoch":10000,
"batch_size":128,
"z_dim":200,
"noise":0.2,
"l2norm":0.00001,
"learning_rate":0.001,
"num_gen_rnn":100,
"num_gen_feature":100,
"num_dis_layers":1,
"num_dis_hidden":100
}train.py and' inference.py contain a configuration CONFIG, where a runtime specific information should be supplied.
NUMERICAL_COLSandDATE_COLSare the names of the numerical/continuous data columns and the date data columns, respectively.DATE_DELIMITERis the datetime delimiter of date records.MODELPATHspecifies the location of the trained model.GPUif available, specify the number of GPUs, Otherwise, leave it empty.
CONFIG = {
"NUMERICAL_COLS": ["Total Costs of OSHPD Projects", "Number of OSHPD Projects"],
"DATE_COLS": ["Data Generation Date"],
"DATE_DELIMITER": "/",
"MODELPATH": "/mnt/new/research/TGAN_tf/output/model/date_model.pkl",
"GPU": "0,1,2,3",
"final_date_columns": None python train.py \
--datapath [TRAIN DATAFILE PATH] \
--data_format [TRAIN DATAFILE FORMAT] python inference.py \
--num_samples [NUMBER OF SYNTHETIC SAMPLES] \
--model_path [TRAINED MODEL PATH]