Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1119,8 +1119,10 @@ static std::tuple<OpResult, std::optional<OpOperand *>>
getUntiledProducerFromSliceSource(OpOperand *source,
ArrayRef<LoopLikeOpInterface> loops) {
std::optional<OpOperand *> destinationIterArg;
assert(!loops.empty() && "expected non empty loops container");
auto loopIt = loops.rbegin();
while (auto iterArg = dyn_cast<BlockArgument>(source->get())) {
while (loopIt != loops.rend() && isa<BlockArgument>(source->get())) {
auto iterArg = cast<BlockArgument>(source->get());
auto loop = *loopIt;
if (iterArg.getOwner()->getParentOp() != loop)
break;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -634,3 +634,57 @@ module attributes {transform.with_named_sequence} {
// CHECK: %[[INSERT_SLICE:.+]] = tensor.insert_slice %[[GENERIC]] into %[[ITER_ARG]]
// CHECK: scf.yield %[[INSERT_SLICE]]
// CHECK: return %[[FOR_RESULT]]

// -----

#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d3, d2, d1)>
module {
func.func private @tile_one_consumer_using_tile_and_fuse(%arg0: tensor<16x128x48x96xf32>, %arg1: tensor<16x96x48x128xf32>) -> tensor<16x96x48x128xf32> {
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<16x128x48x96xf32>) outs(%arg1 : tensor<16x96x48x128xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<16x96x48x128xf32>
return %0 : tensor<16x96x48x128xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%generic = transform.structured.match ops{["linalg.generic"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %loops:4 = transform.structured.fuse %generic {tile_sizes = [1, 16, 16, 16], tile_interchange = [0, 1, 2, 3], apply_cleanup = false}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}

// CHECK: func.func private @tile_one_consumer_using_tile_and_fuse(%[[VAL_0:.*]]: tensor<16x128x48x96xf32>, %[[VAL_1:.*]]: tensor<16x96x48x128xf32>) -> tensor<16x96x48x128xf32> {
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = arith.constant 16 : index
// CHECK: %[[VAL_4:.*]] = arith.constant 128 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 48 : index
// CHECK: %[[VAL_6:.*]] = arith.constant 96 : index
// CHECK: %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_8:.*]] = scf.for %[[VAL_9:.*]] = %[[VAL_2]] to %[[VAL_3]] step %[[VAL_7]] iter_args(%[[VAL_10:.*]] = %[[VAL_1]]) -> (tensor<16x96x48x128xf32>) {
// CHECK: %[[VAL_11:.*]] = scf.for %[[VAL_12:.*]] = %[[VAL_2]] to %[[VAL_4]] step %[[VAL_3]] iter_args(%[[VAL_13:.*]] = %[[VAL_10]]) -> (tensor<16x96x48x128xf32>) {
// CHECK: %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_13]]) -> (tensor<16x96x48x128xf32>) {
// CHECK: %[[VAL_17:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_2]] to %[[VAL_6]] step %[[VAL_3]] iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (tensor<16x96x48x128xf32>) {
// CHECK: %[[VAL_20:.*]] = tensor.extract_slice %[[VAL_0]]{{\[}}%[[VAL_9]], %[[VAL_12]], %[[VAL_15]], %[[VAL_18]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<16x128x48x96xf32> to tensor<1x16x16x16xf32>
// CHECK: %[[VAL_21:.*]] = tensor.extract_slice %[[VAL_19]]{{\[}}%[[VAL_9]], %[[VAL_18]], %[[VAL_15]], %[[VAL_12]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<16x96x48x128xf32> to tensor<1x16x16x16xf32>
// CHECK: %[[VAL_22:.*]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[VAL_20]] : tensor<1x16x16x16xf32>) outs(%[[VAL_21]] : tensor<1x16x16x16xf32>) {
// CHECK: ^bb0(%[[VAL_23:.*]]: f32, %[[VAL_24:.*]]: f32):
// CHECK: linalg.yield %[[VAL_23]] : f32
// CHECK: } -> tensor<1x16x16x16xf32>
// CHECK: %[[VAL_25:.*]] = tensor.insert_slice %[[VAL_26:.*]] into %[[VAL_19]]{{\[}}%[[VAL_9]], %[[VAL_18]], %[[VAL_15]], %[[VAL_12]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<1x16x16x16xf32> into tensor<16x96x48x128xf32>
// CHECK: scf.yield %[[VAL_25]] : tensor<16x96x48x128xf32>
// CHECK: }
// CHECK: scf.yield %[[VAL_27:.*]] : tensor<16x96x48x128xf32>
// CHECK: }
// CHECK: scf.yield %[[VAL_28:.*]] : tensor<16x96x48x128xf32>
// CHECK: }
// CHECK: scf.yield %[[VAL_29:.*]] : tensor<16x96x48x128xf32>
// CHECK: }
// CHECK: return %[[VAL_30:.*]] : tensor<16x96x48x128xf32>
// CHECK: }
// CHECK: }