Skip to content

Z2cc666/GDUT_Data_Visualization

Repository files navigation

πŸ—ΊοΈ Tourism Big Data Visualization Project

πŸ“Œ Project Overview

This project presents a comprehensive data visualization and analysis of tourism data across China. Using Python (Pandas + Pyecharts), we visualize various dimensions such as sales volume, scenic spot distribution, pricing, and holiday travel trends. The final output includes interactive charts and maps that aid tourism planning, decision-making, and public understanding of the tourism market structure.

πŸ“Š Key Features

  • πŸ“Œ Top 20 Most Popular Scenic Spots β€” Horizontal bar chart based on ticket sales
  • 🏞️ City-Level 4A/5A Attractions Distribution β€” Bar chart for city tourism resource density
  • πŸ—ΊοΈ National Map of High-Level Attractions β€” Heat map showing spatial distribution
  • 🌸 Rose Charts β€” Ticket price ranges & number of 4A/5A attractions per province
  • πŸ’¬ Word Cloud β€” Scenic spot introduction highlights
  • πŸ” Scatter Plots β€” Relationships between price levels, sales, and attraction quantity
  • πŸš— Holiday Travel Distribution β€” Geographical distribution of tourist flow

🧾 Dataset Description

  • Format: Excel (.xlsm)

  • Fields: Name, City, Ticket Price, Grade (4A/5A), Sales, Description, Address

  • Preprocessing:

    • Removed duplicates by scenic spot name
    • Filled missing grades and descriptions with mode/defaults
    • Divided ticket price into defined intervals using pd.cut()

πŸ› οΈ Technologies Used

  • Language: Python 3.x

  • Libraries:

    • pandas: Data handling and preprocessing
    • pyecharts: Interactive charts and maps
    • matplotlib & seaborn: Auxiliary visual checks
  • Output Format: Interactive HTML reports

πŸ”Ž Data Mining Techniques

  • Preprocessing:

    • Duplicate removal
    • Null value filling
    • Type normalization
  • Clustering:

    • Price range segmentation
  • Aggregation:

    • Scenic spot count per city
    • Grade-level distribution per region

πŸ“ Project Structure

Tourism-Visualization/
β”œβ”€β”€ data/
β”‚   └── ζ—…ζΈΈζ™―η‚Ή.xlsm
β”œβ”€β”€ figures/
β”‚   β”œβ”€β”€ top20_sales_bar.html
β”‚   β”œβ”€β”€ city_grade_bar.html
β”‚   └── ...
β”œβ”€β”€ src/
β”‚   └── main_visualization.py
β”œβ”€β”€ README.md
└── requirements.txt

πŸš€ How to Run

  1. Clone the repository:

    git clone https://github.com/yourusername/Tourism-Visualization.git
    cd Tourism-Visualization
  2. Install dependencies:

    pip install -r requirements.txt
  3. Run the visualization script:

    python src/main_visualization.py
  4. Open the generated .html files in the figures/ directory with any web browser.

πŸ“ˆ Sample Visualization

Sample Chart

πŸ™‹ Author

  • Name: Zhong Zhuohua
  • Major: Computer Science and Technology 22(3)
  • College: School of International Education
  • ID: 3122010011
  • Instructor: Prof. Lin Zhiyi

πŸ“… Date

May 1, 2025

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published