How to use generator as a part of experimental Sleptsov net based on embedded system design on FPGAs :
We list references to components in "Compatibility" section.
-
Use
Tinandas graphical editor and its labels with special syntax (section "Transition substitution label") to specify transition substitution ofHSN. -
Use
NDRtoSNto convertNDRfile ofTinaintoHSNorLSN. -
Use
HSNtoLSNto compile and link HSN file and mentioned in itLSNfiles into a singleLSNfile. -
Use
SN-VMto covertLSNfile intoHfile. -
Use
generatorto generateverilog code. -
Run
verilog codeandcstfile in Gowin FPGA Designer.
Tina, nd, and NDR file format according to https://projects.laas.fr/tina/index.php
NDRtoSN and transition substitution labels according to https://github.com/dazeorgacm/NDRtoSN
SN-VM, LSN and H file format according to https://github.com/zhangq9919/Sleptsov-net-processor
HSNtoLSN and HSN file format according to https://github.com/HfZhao1998/Compiler-and-Linker-of-Sleptsov-net-Program
To build NDRtoSN, files for work with abstract lists al.h and al.c should be downloaded from https://github.com/dazeorgacm/ts
generator , verilog code and cst file format according to https://github.com/ZhangS2000/verilog_generator/tree/main
h file contains m, n, B[m][n], D[m][n], R[m][n], and mu[m]
h file can be obtained from SN-VM
Verilog code corresponding to Sleptsov net
Choose .v and .cst files corresponding to FPGA to run in Gowin
m: number of places
n: number of transitions
B matrix: incoming arcs of transitions
D matrix: outgoing arcs of transitions
R matrix: priority arcs connecting transitions
mu vector: initial marking
RES_PL: output place of Sleptsov net
pres1: bits of places and transitions
pres2: bits of leds
add-ndrtosn.h & add_sn.v: two numbers additions
mul-ndrtosn.h & mul_sn.v: two numbers multiplications
fdiv-ndrtosn.h & div_sn.v: Division
d1-ndrtosn.h & d1_sn.v: Exact double exponent counters 2^2^k k=1
d2-ndrtosn.h & d2_sn.v: Exact double exponent counters 2^2^k k=2
d3-ndrtosn.h & d3_sn.v: Exact double exponent counters 2^2^k k=3
d4-ndrtosn.h & d4_sn.v: Exact double exponent counters 2^2^k k=4
d5-ndrtosn.h & d5_sn.v: Exact double exponent counters 2^2^k k=5
matrix2.h & matrix2.v: Two-dimensional matrix multiplication
matrix3.h & matrix3.v: Three-dimensional matrix multiplication
pol2.h & pol2.v: Computational polynomial n=2
pol3.h & pol3.v: Computational polynomial n=3
pol4.h & pol4.v: Computational polynomial n=4
pol5.h & pol5.v: Computational polynomial n=5
pol6.h & pol6.v: Computational polynomial n=6
-
Zaitsev D.A. Sleptsov Nets Run Fast, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, Vol. 46, No. 5, 682 - 693. http://dx.doi.org/10.1109/TSMC.2015.2444414
-
Zaitsev D.A., Jürjens J. Programming in the Sleptsov net language for systems control, Advances in Mechanical Engineering, 2016, Vol. 8(4), 1-11. https://doi.org/10.1177%2F1687814016640159
-
Zaitsev D.A. Universal Sleptsov Net, International Journal of Computer Mathematics, 94(12) 2017, 2396-2408. http://dx.doi.org/10.1080/00207160.2017.1283410
-
Dmitry A. Zaitsev, Strong Sleptsov nets are Turing complete, Information Sciences, Volume 621, 2023, 172-182. https://doi.org/10.1016/j.ins.2022.11.098
-
Qing Zhang, Ding Liu, Yifan Hou, Sleptsov Net Processor, International Conference ”Problems of Infocommunications. Science and Technology” (PICST2022), 10-12 October, 2022, Kyiv, Ukraine.
-
Hongfei Zhao, Ding Liu, Yifan Hou, Compiler and Linker of Sleptsov Net Program,International Conference ”Problems of Infocommunications. Science and Technology” (PICST2022), 10-12 October, 2022, Kyiv, Ukraine.
-
Sleptsov Net Computing Resolves Modern Supercomputing Problems, The April 21, 2023, edition of ACM TechNews, https://technews.acm.org/archives.cfm?fo=2023-04-apr/apr-21-2023.html