|
2 | 2 |
|
3 | 3 | import java.util.*; |
4 | 4 |
|
5 | | -/**Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. |
6 | | -
|
7 | | - push(x) -- Push element x onto stack. |
8 | | - pop() -- Removes the element on top of the stack. |
9 | | - top() -- Get the top element. |
10 | | - getMin() -- Retrieve the minimum element in the stack. |
11 | | - Example: |
12 | | - _155 minStack = new _155(); |
13 | | - minStack.push(-2); |
14 | | - minStack.push(0); |
15 | | - minStack.push(-3); |
16 | | - minStack.getMin(); --> Returns -3. |
17 | | - minStack.pop(); |
18 | | - minStack.top(); --> Returns 0. |
19 | | - minStack.getMin(); --> Returns -2. |
| 5 | +/** |
| 6 | + * 155. Min Stack |
| 7 | + * Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. |
| 8 | +
|
| 9 | + * push(x) -- Push element x onto stack. |
| 10 | + * pop() -- Removes the element on top of the stack. |
| 11 | + * top() -- Get the top element. |
| 12 | + * getMin() -- Retrieve the minimum element in the stack. |
| 13 | +
|
| 14 | + * Example: |
| 15 | + * MinStack minStack = new MinStack(); |
| 16 | + * minStack.push(-2); |
| 17 | + * minStack.push(0); |
| 18 | + * minStack.push(-3); |
| 19 | + * minStack.getMin(); --> Returns -3. |
| 20 | + * minStack.pop(); |
| 21 | + * minStack.top(); --> Returns 0. |
| 22 | + * minStack.getMin(); --> Returns -2. |
20 | 23 | */ |
| 24 | + |
21 | 25 | public class _155 { |
22 | | - |
23 | | - private Stack<Integer> stack; |
24 | | - private int min; |
25 | | - |
26 | | - /** initialize your data structure here. */ |
27 | | - public _155() { |
28 | | - stack = new Stack(); |
29 | | - min = Integer.MAX_VALUE; |
30 | | - } |
31 | | - |
32 | | - public void push(int x) { |
33 | | - /**All the trick happens here, we push the second minimum number onto the stack before we push the newer one, |
34 | | - * this way, when popping, we could always get the next minimum one in constant time.*/ |
35 | | - if(x <= min){ |
36 | | - stack.push(min); |
37 | | - min = x; |
| 26 | + |
| 27 | + public static class MinStack { |
| 28 | + private Stack<Integer> stack; |
| 29 | + private int min; |
| 30 | + |
| 31 | + /** |
| 32 | + * initialize your data structure here. |
| 33 | + */ |
| 34 | + public MinStack() { |
| 35 | + stack = new Stack(); |
| 36 | + min = Integer.MAX_VALUE; |
38 | 37 | } |
39 | | - stack.push(x); |
40 | | - } |
41 | | - |
42 | | - public void pop() { |
43 | | - if(min == stack.peek()){ |
44 | | - stack.pop(); |
45 | | - min = stack.pop(); |
46 | | - } else { |
47 | | - stack.pop(); |
| 38 | + |
| 39 | + public void push(int x) { |
| 40 | + /**All the trick happens here, we push the second minimum number onto the stack before we push the newer one, |
| 41 | + * this way, when popping, we could always get the next minimum one in constant time.*/ |
| 42 | + if (x <= min) { |
| 43 | + stack.push(min); |
| 44 | + min = x; |
| 45 | + } |
| 46 | + stack.push(x); |
| 47 | + } |
| 48 | + |
| 49 | + public void pop() { |
| 50 | + if (min == stack.peek()) { |
| 51 | + stack.pop(); |
| 52 | + min = stack.pop(); |
| 53 | + } else { |
| 54 | + stack.pop(); |
| 55 | + } |
| 56 | + if (stack.isEmpty()) min = Integer.MAX_VALUE; |
| 57 | + } |
| 58 | + |
| 59 | + public int top() { |
| 60 | + return stack.peek(); |
| 61 | + } |
| 62 | + |
| 63 | + public int getMin() { |
| 64 | + return min; |
48 | 65 | } |
49 | | - if(stack.isEmpty()) min = Integer.MAX_VALUE; |
50 | | - } |
51 | | - |
52 | | - public int top() { |
53 | | - return stack.peek(); |
54 | | - } |
55 | | - |
56 | | - public int getMin() { |
57 | | - return min; |
58 | 66 | } |
59 | 67 |
|
60 | 68 | } |
0 commit comments