|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import matplotlib.pyplot as plt\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "import math" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 2, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "def get_t(labels_path):\n", |
| 21 | + " with open(labels_path) as f:\n", |
| 22 | + " training_labels = [int(x) for x in f.read().splitlines()]\n", |
| 23 | + " return np.array(training_labels)" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 3, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "def get_confusion_matrix(true_labels, predictions): \n", |
| 33 | + " conf_matrix = np.zeros((10, 10))\n", |
| 34 | + " for i, predicted_class in enumerate(predictions):\n", |
| 35 | + " conf_matrix[true_labels[i]][predicted_class] += 1\n", |
| 36 | + "\n", |
| 37 | + " return conf_matrix" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 4, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "def get_x(folder_name, number_images):\n", |
| 47 | + " x_input_points = np.zeros((0, 784))\n", |
| 48 | + " for i in range(1, number_images + 1): # +1 Since it's exclusive\n", |
| 49 | + " img_path = '{}/{}.jpg'.format(folder_name, i)\n", |
| 50 | + " x_input_points = np.append(x_input_points, plt.imread(img_path).reshape(1, 784), axis=0)\n", |
| 51 | + "\n", |
| 52 | + " return x_input_points" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": null, |
| 58 | + "metadata": {}, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "def gaussian(x, mean, variance):\n", |
| 62 | + " deno = (2 * math.pi * variance) ** 0.5\n", |
| 63 | + " exp = -1 * ( (x-mean)**2 / (2*variance) )\n", |
| 64 | + " return (1/deno) * math.exp(exp)" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 5, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "# Loading in a separate cell to avoid multiple loads.\n", |
| 74 | + "x_delta = get_x('Train', 2400)\n", |
| 75 | + "training_true_labels = get_t('Train/Training Labels.txt')" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 6, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [ |
| 83 | + { |
| 84 | + "data": { |
| 85 | + "text/plain": [ |
| 86 | + "(10, 784)" |
| 87 | + ] |
| 88 | + }, |
| 89 | + "execution_count": 6, |
| 90 | + "metadata": {}, |
| 91 | + "output_type": "execute_result" |
| 92 | + } |
| 93 | + ], |
| 94 | + "source": [ |
| 95 | + "means = np.zeros((10, 784))\n", |
| 96 | + "variances = np.zeros((10, 784))\n", |
| 97 | + "\n", |
| 98 | + "classes_inputs = np.split(x_delta/255, 10)\n", |
| 99 | + "\n", |
| 100 | + "for i, c in enumerate(classes_inputs):\n", |
| 101 | + " means[i] = np.mean(c, axis=0)\n", |
| 102 | + " \n", |
| 103 | + "for i, c in enumerate(classes_inputs):\n", |
| 104 | + " variances[i] = np.var(c, axis=0)\n", |
| 105 | + " variances[i][variances[i] < 0.01] = 0.01\n", |
| 106 | + "means.shape" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 9, |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [ |
| 114 | + { |
| 115 | + "name": "stderr", |
| 116 | + "output_type": "stream", |
| 117 | + "text": [ |
| 118 | + "/home/abdullah/.virtualenvs/ml/lib/python3.5/site-packages/ipykernel_launcher.py:8: RuntimeWarning: overflow encountered in double_scalars\n", |
| 119 | + " \n" |
| 120 | + ] |
| 121 | + } |
| 122 | + ], |
| 123 | + "source": [ |
| 124 | + "x_delta_test = get_x('Test', 200)/255\n", |
| 125 | + "test_true_labels = get_t('Test/Test Labels.txt')\n", |
| 126 | + "\n", |
| 127 | + "probabilities = np.ones((200, 10))\n", |
| 128 | + "for i in range(200):\n", |
| 129 | + " for c in range(10):\n", |
| 130 | + " for f in range(784):\n", |
| 131 | + " probabilities[i][c] *= gaussian(x_delta_test[i][f], means[c][f], variances[c][f])" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": 10, |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [ |
| 139 | + { |
| 140 | + "data": { |
| 141 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAACwZJREFUeJzt3VuIXeUZxvHnceegiW0caYtkkpqkWNsobaJTTykWEqG1ilIoJYpCvWhuqkYRREvBy4KI6IUIaVQKRqXEXIiIWjxcCG3q5EA1GYV0THPGFMcoiub09mKmEMXMXpP5Ptfsl/8PhMx25fVlmL9r7z1r1jgiBCCn09peAEA9BA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYtNqDJ1zdifO6Z9efO7+t2cVn4m63OlUmRvHjhWf2Uu7fqZPdDg+d7fjqgR+Tv90PfrcucXn/ul7Pyo+E3V15vRVmXtsZKT4zF7adWO80ug4nqIDiRE4kBiBA4kROJAYgQOJETiQWKPAbf/C9ru2d9i+p/ZSAMroGrjtjqRHJF0tabGkG2wvrr0YgMlrcga/RNKOiBiOiMOSnpF0fd21AJTQJPB+SbtP+HjP2GNfYHuV7UHbgx9+UP7SPAATV+xNtohYExEDETFw1tl1rukFMDFNAt8raf4JH88bewzAFNck8DclnWd7oe0ZklZKeq7uWgBK6PrTZBFx1Patkl6S1JH0eERsq74ZgElr9OOiEfGCpBcq7wKgMK5kAxIjcCAxAgcSI3AgMQIHEnON3w/+TZ8dl3pF8bkv7dtafKYk/XzukipzgVo2xiv6KD7oeldVzuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGKNfjfZVFHr7qc/2Xqs+Mw3l/TW70jv9PW1vcKEHBsZKT6zlz4HPtTs64szOJAYgQOJETiQGIEDiRE4kBiBA4l1Ddz2fNuv2d5ue5vt1V/HYgAmr8n3wY9KuisiNtv+hqRNtv8WEdsr7wZgkrqewSNif0RsHvvzx5KGJPXXXgzA5E3oNbjtBZKWStpYYxkAZTW+VNX2mZKelXRHRHz0Ff9+laRVknS6ZhVbEMCpa3QGtz1do3Gvi4gNX3VMRKyJiIGIGJiumSV3BHCKmryLbkmPSRqKiAfrrwSglCZn8GWSbpa03PbWsX9+WXkvAAV0fQ0eEW9I8tewC4DCuJINSIzAgcQIHEiMwIHECBxIrKduulhLjRsk/mboQPGZkvTXH55TZW4tNW6OWIv75lSZe3R4Z/GZEc1uFMoZHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjLuqVlLr7qfDTy2pMnfRjVurzPXFF1SZG5u2lZ85cqj4TEk6uvzi4jPjn39vdBxncCAxAgcSI3AgMQIHEiNwIDECBxIjcCCxxoHb7tjeYvv5mgsBKGciZ/DVkoZqLQKgvEaB254n6RpJa+uuA6CkpmfwhyTdLen4yQ6wvcr2oO3BI/q8yHIAJqdr4LavlfR+RGwa77iIWBMRAxExMF0ziy0I4NQ1OYMvk3Sd7Z2SnpG03PaTVbcCUETXwCPi3oiYFxELJK2U9GpE3FR9MwCTxvfBgcQm9PPgEfG6pNerbAKgOM7gQGIEDiRG4EBiBA4kRuBAYtxVtcd8/48fVpl79JV5VebGivJ3P63l+KK5VebO3DJcfOZpnza7HJwzOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGHdV7TFHh3fWGbyiztg/73qjytzfffenxWeeNryv+ExJOjYyUnxmxLFGx3EGBxIjcCAxAgcSI3AgMQIHEiNwILFGgds+y/Z62+/YHrJ9ee3FAExe0++DPyzpxYj4te0ZkmZV3AlAIV0Dtz1H0pWSfitJEXFY0uG6awEooclT9IWSDkp6wvYW22ttz668F4ACmgQ+TdJFkh6NiKWSPpF0z5cPsr3K9qDtwSNq9svJAdTVJPA9kvZExMaxj9drNPgviIg1ETEQEQPTNbPkjgBOUdfAI+KApN22zx97aIWk7VW3AlBE03fRb5O0buwd9GFJt9RbCUApjQKPiK2SBirvAqAwrmQDEiNwIDECBxIjcCAxAgcSI3AgMe6q2mN88QVV5sambVXm1rj7qSQNP7Wk+MxFN24tPlOSPv3VpcVnHn/1H42O4wwOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGJVbrroTkedOX3F5x4bGSk+s9fUujlir6lxg8R7//2v4jMl6f6B8i10Pv6s0XGcwYHECBxIjMCBxAgcSIzAgcQIHEiMwIHEGgVu+07b22y/bftp26fXXgzA5HUN3Ha/pNslDUTEhZI6klbWXgzA5DV9ij5N0hm2p0maJWlfvZUAlNI18IjYK+kBSbsk7Zd0KCJe/vJxtlfZHrQ9eDiaXUYHoK4mT9H7JF0vaaGkuZJm277py8dFxJqIGIiIgRm8RAemhCZP0a+S9F5EHIyII5I2SLqi7loASmgS+C5Jl9meZduSVkgaqrsWgBKavAbfKGm9pM2S3hr7O2sq7wWggEY/Dx4R90m6r/IuAArjSjYgMQIHEiNwIDECBxIjcCCxKndVhdTpK38nTUk6vmhulbm9drfWGp/f+wd+VnymJB34y3eKzzxyZ7N0OYMDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4k5IsoPtQ9K+k+DQ78l6b/FF6inl/btpV2l3tp3Kux6bkR8u9tBVQJvyvZgRAy0tsAE9dK+vbSr1Fv79tKuPEUHEiNwILG2A1/T8n9/onpp317aVeqtfXtm11ZfgwOoq+0zOICKWgvc9i9sv2t7h+172tqjG9vzbb9me7vtbbZXt71TE7Y7trfYfr7tXcZj+yzb622/Y3vI9uVt7zQe23eOfR28bftp26e3vdN4WgncdkfSI5KulrRY0g22F7exSwNHJd0VEYslXSbp91N41xOtljTU9hINPCzpxYj4gaQfawrvbLtf0u2SBiLiQkkdSSvb3Wp8bZ3BL5G0IyKGI+KwpGckXd/SLuOKiP0RsXnszx9r9Auwv92txmd7nqRrJK1te5fx2J4j6UpJj0lSRByOiA/b3aqraZLOsD1N0ixJ+1reZ1xtBd4vafcJH+/RFI9GkmwvkLRU0sZ2N+nqIUl3Szre9iJdLJR0UNITYy8n1tqe3fZSJxMReyU9IGmXpP2SDkXEy+1uNT7eZGvI9pmSnpV0R0R81PY+J2P7WknvR8SmtndpYJqkiyQ9GhFLJX0iaSq/H9On0WeaCyXNlTTb9k3tbjW+tgLfK2n+CR/PG3tsSrI9XaNxr4uIDW3v08UySdfZ3qnRlz7LbT/Z7kontUfSnoj4/zOi9RoNfqq6StJ7EXEwIo5I2iDpipZ3Gldbgb8p6TzbC23P0OgbFc+1tMu4bFujrxGHIuLBtvfpJiLujYh5EbFAo5/XVyNiSp5lIuKApN22zx97aIWk7S2u1M0uSZfZnjX2dbFCU/hNQWn0KdLXLiKO2r5V0ksafSfy8YjY1sYuDSyTdLOkt2xvHXvsDxHxQos7ZXKbpHVj/6MflnRLy/ucVERstL1e0maNfndli6b4VW1cyQYkxptsQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiT2PwxUclT/PpitAAAAAElFTkSuQmCC\n", |
| 142 | + "text/plain": [ |
| 143 | + "<Figure size 432x288 with 1 Axes>" |
| 144 | + ] |
| 145 | + }, |
| 146 | + "metadata": { |
| 147 | + "needs_background": "light" |
| 148 | + }, |
| 149 | + "output_type": "display_data" |
| 150 | + } |
| 151 | + ], |
| 152 | + "source": [ |
| 153 | + "predictions = np.argmax(probabilities, axis=1)\n", |
| 154 | + "conf_matrix = get_confusion_matrix(test_true_labels, predictions)\n", |
| 155 | + "plt.imshow(conf_matrix)\n", |
| 156 | + "plt.savefig('Confusion-naive.jpg')\n" |
| 157 | + ] |
| 158 | + } |
| 159 | + ], |
| 160 | + "metadata": { |
| 161 | + "file_extension": ".py", |
| 162 | + "kernelspec": { |
| 163 | + "display_name": "Python 3", |
| 164 | + "language": "python", |
| 165 | + "name": "python3" |
| 166 | + }, |
| 167 | + "language_info": { |
| 168 | + "codemirror_mode": { |
| 169 | + "name": "ipython", |
| 170 | + "version": 3 |
| 171 | + }, |
| 172 | + "file_extension": ".py", |
| 173 | + "mimetype": "text/x-python", |
| 174 | + "name": "python", |
| 175 | + "nbconvert_exporter": "python", |
| 176 | + "pygments_lexer": "ipython3", |
| 177 | + "version": "3.5.2" |
| 178 | + }, |
| 179 | + "mimetype": "text/x-python", |
| 180 | + "name": "python", |
| 181 | + "npconvert_exporter": "python", |
| 182 | + "pygments_lexer": "ipython3", |
| 183 | + "version": 3 |
| 184 | + }, |
| 185 | + "nbformat": 4, |
| 186 | + "nbformat_minor": 2 |
| 187 | +} |
0 commit comments