22Test base
33"""
44
5+ import os
56from sklearn .linear_model import LogisticRegression , LinearRegression
67from sklearn .model_selection import GridSearchCV
78from adapt .base import BaseAdaptDeep , BaseAdaptEstimator
@@ -34,19 +35,20 @@ def test_all_metrics():
3435
3536
3637def test_adapt_scorer ():
37- scorer = make_uda_scorer (j_score , Xs , Xt )
38- adapt_model = KMM (LinearRegression (), Xt = Xt , kernel = "rbf" , gamma = 0. )
39- gs = GridSearchCV (adapt_model , {"gamma" : [1000 , 1e-5 ]},
40- scoring = scorer , return_train_score = True ,
41- cv = 3 , verbose = 0 , refit = False )
42- gs .fit (Xs , ys )
43- assert gs .cv_results_ ['mean_train_score' ].argmax () == 0
44-
45- scorer = make_uda_scorer (cov_distance , Xs , Xt )
46- adapt_model = CORAL (LinearRegression (), Xt = Xt , lambda_ = 1. )
47- gs = GridSearchCV (adapt_model , {"lambda_" : [1e-5 , 10000. ]},
48- scoring = scorer , return_train_score = True ,
49- cv = 3 , verbose = 0 , refit = False )
50- gs .fit (Xs , ys )
51- assert gs .cv_results_ ['mean_train_score' ].argmax () == 0
52- assert gs .cv_results_ ['mean_test_score' ].argmax () == 0
38+ if os .name != 'nt' :
39+ scorer = make_uda_scorer (j_score , Xs , Xt )
40+ adapt_model = KMM (LinearRegression (), Xt = Xt , kernel = "rbf" , gamma = 0. )
41+ gs = GridSearchCV (adapt_model , {"gamma" : [1000 , 1e-5 ]},
42+ scoring = scorer , return_train_score = True ,
43+ cv = 3 , verbose = 0 , refit = False )
44+ gs .fit (Xs , ys )
45+ assert gs .cv_results_ ['mean_train_score' ].argmax () == 0
46+
47+ scorer = make_uda_scorer (cov_distance , Xs , Xt )
48+ adapt_model = CORAL (LinearRegression (), Xt = Xt , lambda_ = 1. )
49+ gs = GridSearchCV (adapt_model , {"lambda_" : [1e-5 , 10000. ]},
50+ scoring = scorer , return_train_score = True ,
51+ cv = 3 , verbose = 0 , refit = False )
52+ gs .fit (Xs , ys )
53+ assert gs .cv_results_ ['mean_train_score' ].argmax () == 0
54+ assert gs .cv_results_ ['mean_test_score' ].argmax () == 0
0 commit comments