|
| 1 | +class Node { |
| 2 | + constructor (vertex, weight) { |
| 3 | + this.vertex = vertex; |
| 4 | + this.weight = weight; |
| 5 | + } |
| 6 | +} |
| 7 | + |
| 8 | +class PriorityQueue { |
| 9 | + constructor () { |
| 10 | + this.values = []; |
| 11 | + } |
| 12 | + |
| 13 | + enqueue (val) { |
| 14 | + this.values.push(val); |
| 15 | + this.sort(); |
| 16 | + } |
| 17 | + |
| 18 | + dequeue () { |
| 19 | + return this.values.shift(); |
| 20 | + } |
| 21 | + |
| 22 | + sort () { |
| 23 | + this.values.sort((a, b) => a.priority - b.priority); |
| 24 | + } |
| 25 | +} |
| 26 | + |
| 27 | +class WeightedGraph { |
| 28 | + constructor () { |
| 29 | + this.adjacencyList = {}; |
| 30 | + } |
| 31 | + |
| 32 | + addVertex (vertex) { |
| 33 | + if (!this.adjacencyList[vertex]) { |
| 34 | + this.adjacencyList[vertex] = []; |
| 35 | + } |
| 36 | + } |
| 37 | + |
| 38 | + addEdge (vertex1, vertex2, weight) { |
| 39 | + this.adjacencyList[vertex1].push(new Node(vertex2, weight)); |
| 40 | + this.adjacencyList[vertex2].push(new Node(vertex1, weight)); |
| 41 | + } |
| 42 | + |
| 43 | + Dijkstra (start, finish) { |
| 44 | + const nodes = new PriorityQueue(); |
| 45 | + const distances = {}; |
| 46 | + const previous = {}; |
| 47 | + const path = []; // to return at end |
| 48 | + let smallest; |
| 49 | + // build up initial state |
| 50 | + for (const vertex in this.adjacencyList) { |
| 51 | + if (vertex === start) { |
| 52 | + distances[vertex] = 0; |
| 53 | + nodes.enqueue(vertex, 0); |
| 54 | + } else { |
| 55 | + distances[vertex] = Infinity; |
| 56 | + nodes.enqueue(vertex, Infinity); |
| 57 | + } |
| 58 | + previous[vertex] = null; |
| 59 | + } |
| 60 | + // as long as there is something to visit |
| 61 | + while (nodes.values.length) { |
| 62 | + smallest = nodes.dequeue().val; |
| 63 | + if (smallest === finish) { |
| 64 | + // WE ARE DONE |
| 65 | + // BUILD UP PATH TO RETURN AT END |
| 66 | + while (previous[smallest]) { |
| 67 | + path.push(smallest); |
| 68 | + smallest = previous[smallest]; |
| 69 | + } |
| 70 | + break; |
| 71 | + } |
| 72 | + if (smallest || distances[smallest] !== Infinity) { |
| 73 | + for (const neighbor in this.adjacencyList[smallest]) { |
| 74 | + // find neighboring node |
| 75 | + const nextNode = this.adjacencyList[smallest][neighbor]; |
| 76 | + // calculate new distance to neighboring node |
| 77 | + const candidate = distances[smallest] + nextNode.weight; |
| 78 | + const nextNeighbor = nextNode.node; |
| 79 | + if (candidate < distances[nextNeighbor]) { |
| 80 | + // updating new smallest distance to neighbor |
| 81 | + distances[nextNeighbor] = candidate; |
| 82 | + // updating previous - How we got to neighbor |
| 83 | + previous[nextNeighbor] = smallest; |
| 84 | + // enqueue in priority queue with new priority |
| 85 | + nodes.enqueue(nextNeighbor, candidate); |
| 86 | + } |
| 87 | + } |
| 88 | + } |
| 89 | + } |
| 90 | + return path.concat(smallest).reverse(); |
| 91 | + } |
| 92 | +} |
| 93 | + |
| 94 | +const graph = new WeightedGraph(); |
| 95 | + |
| 96 | +graph.addVertex('A'); |
| 97 | +graph.addVertex('B'); |
| 98 | +graph.addVertex('C'); |
| 99 | +graph.addVertex('D'); |
| 100 | +graph.addVertex('E'); |
| 101 | +graph.addVertex('F'); |
| 102 | + |
| 103 | +graph.addEdge('A', 'B', 4); |
| 104 | +graph.addEdge('A', 'C', 2); |
| 105 | +graph.addEdge('B', 'E', 3); |
| 106 | +graph.addEdge('C', 'D', 2); |
| 107 | +graph.addEdge('C', 'F', 4); |
| 108 | +graph.addEdge('D', 'E', 3); |
| 109 | +graph.addEdge('D', 'F', 1); |
| 110 | +graph.addEdge('E', 'F', 1); |
| 111 | + |
| 112 | +console.log(JSON.stringify(graph, null, 4)); |
0 commit comments