@@ -10,259 +10,80 @@ float *a &[1] = 0xNNNN
1010float *a_grad &[1] = 0xNNNN
1111float *b &[1] = 0xNNNN
1212float *b_grad &[1] = 0xNNNN
13- float *e &[1] = 0xNNNN
14- float *e_grad &[1] = 0xNNNN
15- float *f &[1] = 0xNNNN
16- float *f_grad &[1] = 0xNNNN
17- float *n10 &[1] = 0xNNNN
18- float *n11 &[1] = 0xNNNN
19- float *n12 &[1] = 0xNNNN
20- float *n12_grad &[1] = 0xNNNN
21- float *n14_d &[1] = 0xNNNN
22- float *n14_d_grad &[1] = 0xNNNN
23- float *n17 &[1] = 0xNNNN
24- float *n17_grad &[1] = 0xNNNN
25- float *n19_c &[1] = 0xNNNN
26- float *n19_c_grad &[1] = 0xNNNN
27- float *n22 &[1] = 0xNNNN
28- float *n22_grad &[1] = 0xNNNN
29- float *n25 &[1] = 0xNNNN
30- float *n25_grad &[1] = 0xNNNN
31- float *n27 &[1] = 0xNNNN
32- float *n27_grad &[1] = 0xNNNN
33- float *n29_c &[1] = 0xNNNN
34- float *n29_c_grad &[1] = 0xNNNN
35- float *n31 &[1] = 0xNNNN
36- float *n31_grad &[1] = 0xNNNN
37- float *n33_relu &[1] = 0xNNNN
38- float *n33_relu_grad &[1] = 0xNNNN
39- float *n36 &[1] = 0xNNNN
40- float *n36_grad &[1] = 0xNNNN
41- float *n38 &[1] = 0xNNNN
42- float *n38_grad &[1] = 0xNNNN
43- float *n40_d &[1] = 0xNNNN
44- float *n40_d_grad &[1] = 0xNNNN
45- float *n42 &[1] = 0xNNNN
46- float *n42_grad &[1] = 0xNNNN
47- float *n44_relu &[1] = 0xNNNN
48- float *n44_relu_grad &[1] = 0xNNNN
49- float *n47 &[1] = 0xNNNN
50- float *n47_grad &[1] = 0xNNNN
51- float *n49 &[1] = 0xNNNN
52- float *n49_grad &[1] = 0xNNNN
53- float *n4_c &[1] = 0xNNNN
54- float *n4_c_grad &[1] = 0xNNNN
55- float *n51_d &[1] = 0xNNNN
56- float *n51_d_grad &[1] = 0xNNNN
57- float *n58 &[1] = 0xNNNN
58- float *n60_g &[1] = 0xNNNN
59- float *n60_g_grad &[1] = 0xNNNN
60- float *n63 &[1] = 0xNNNN
61- float *n63_grad &[1] = 0xNNNN
62- float *n66 &[1] = 0xNNNN
63- float *n68 &[1] = 0xNNNN
64- float *n69 &[1] = 0xNNNN
65- float *n7 &[1] = 0xNNNN
66- float *n70_g &[1] = 0xNNNN
67- float *n70_g_grad &[1] = 0xNNNN
68- float *n7_grad &[1] = 0xNNNN
13+ float *g &[1] = 0xNNNN
6914COMMENT: g forward and gradient update
70- # n22[0] := (-1 * a[0]);
71- n22[0]{=MAYBE UNINITIALIZED} = 4000e-3 = ((float)(-1) * a[0]{=-4000e-3})
7215# n4_c[0] := (a[0] + b[0]);
7316n4_c[0]{=MAYBE UNINITIALIZED} = -2000e-3 = (a[0]{=-4000e-3} + b[0]{=2000e-3})
74- # n17[0] := (n4_c[0] + n4_c[0]);
75- n17[0]{=MAYBE UNINITIALIZED} = -4000e-3 = (n4_c[0]{=-2000e-3} + n4_c[0]{=-2000e-3})
76- # n19_c[0] := (n17[0] + 1);
77- n19_c[0]{=MAYBE UNINITIALIZED} = -3000e-3 = (n17[0]{=-4000e-3} + (float)(1))
78- # n25[0] := (n19_c[0] + 1);
79- n25[0]{=MAYBE UNINITIALIZED} = -2000e-3 = (n19_c[0]{=-3000e-3} + (float)(1))
80- # n27[0] := (n25[0] + n19_c[0]);
81- n27[0]{=MAYBE UNINITIALIZED} = -5000e-3 = (n25[0]{=-2000e-3} + n19_c[0]{=-3000e-3})
82- # n29_c[0] := (n27[0] + n22[0]);
83- n29_c[0]{=MAYBE UNINITIALIZED} = -1000e-3 = (n27[0]{=-5000e-3} + n22[0]{=4000e-3})
17+ # n19_c[0] := ((n4_c[0] + n4_c[0]) + 1);
18+ n19_c[0]{=MAYBE UNINITIALIZED} = -3000e-3 = ((n4_c[0]{=-2000e-3} + n4_c[0]{=-2000e-3}) + (float)(1))
8419# n42[0] := (b[0] - a[0]);
8520n42[0]{=MAYBE UNINITIALIZED} = 6000e-3 = (b[0]{=2000e-3} - a[0]{=-4000e-3})
86- # n44_relu[0] := relu(n42[0]);
87- n44_relu[0]{=MAYBE UNINITIALIZED} = 6000e-3 = fmaxf(0.0, n42[0]{=6000e-3})
8821# n31[0] := (b[0] + a[0]);
8922n31[0]{=MAYBE UNINITIALIZED} = -2000e-3 = (b[0]{=2000e-3} + a[0]{=-4000e-3})
90- # n33_relu[0] := relu(n31[0]);
91- n33_relu[0]{=MAYBE UNINITIALIZED} = 0e-3 = fmaxf(0.0, n31[0]{=-2000e-3})
92- # n7[0] := (b[0] * (b[0] * b[0]));
93- n7[0]{=MAYBE UNINITIALIZED} = 8000e-3 = (b[0]{=2000e-3} * (b[0]{=2000e-3} * b[0]{=2000e-3}))
94- # n12[0] := (a[0] * b[0]);
95- n12[0]{=MAYBE UNINITIALIZED} = -8000e-3 = (a[0]{=-4000e-3} * b[0]{=2000e-3})
96- # n14_d[0] := (n12[0] + n7[0]);
97- n14_d[0]{=MAYBE UNINITIALIZED} = 0e-3 = (n12[0]{=-8000e-3} + n7[0]{=8000e-3})
98- # n36[0] := (n14_d[0] * 2);
99- n36[0]{=MAYBE UNINITIALIZED} = 0e-3 = (n14_d[0]{=0e-3} * (float)(2))
100- # n38[0] := (n14_d[0] + n36[0]);
101- n38[0]{=MAYBE UNINITIALIZED} = 0e-3 = (n14_d[0]{=0e-3} + n36[0]{=0e-3})
102- # n40_d[0] := (n38[0] + n33_relu[0]);
103- n40_d[0]{=MAYBE UNINITIALIZED} = 0e-3 = (n38[0]{=0e-3} + n33_relu[0]{=0e-3})
104- # n47[0] := (3 * n40_d[0]);
105- n47[0]{=MAYBE UNINITIALIZED} = 0e-3 = ((float)(3) * n40_d[0]{=0e-3})
106- # n49[0] := (n40_d[0] + n47[0]);
107- n49[0]{=MAYBE UNINITIALIZED} = 0e-3 = (n40_d[0]{=0e-3} + n47[0]{=0e-3})
108- # n51_d[0] := (n49[0] + n44_relu[0]);
109- n51_d[0]{=MAYBE UNINITIALIZED} = 6000e-3 = (n49[0]{=0e-3} + n44_relu[0]{=6000e-3})
110- # e[0] := (n29_c[0] - n51_d[0]);
111- e[0]{=MAYBE UNINITIALIZED} = -7000e-3 = (n29_c[0]{=-1000e-3} - n51_d[0]{=6000e-3})
23+ # n14_d[0] := fma(a[0], b[0], (b[0] * (b[0] * b[0])));
24+ n14_d[0]{=MAYBE UNINITIALIZED} = 0e-3 = fmaf(a[0]{=-4000e-3},b[0]{=2000e-3},(b[0]{=2000e-3} * (b[0]{=2000e-3} * b[0]{=2000e-3})))
25+ # n40_d[0] := (fma(n14_d[0], 2, n14_d[0]) + relu(n31[0]));
26+ n40_d[0]{=MAYBE UNINITIALIZED} = 0e-3 = (fmaf(n14_d[0]{=0e-3},(float)(2),n14_d[0]{=0e-3}) + fmaxf(0.0, n31[0]{=-2000e-3}))
27+ # e[0] := (fma(-1, a[0], ((n19_c[0] + 1) + n19_c[0])) - (fma(3, n40_d[0], n40_d[0]) + relu(n42[0])));
28+ e[0]{=MAYBE UNINITIALIZED} = -7000e-3 = (fmaf((float)(-1),a[0]{=-4000e-3},((n19_c[0]{=-3000e-3} + (float)(1)) + n19_c[0]{=-3000e-3})) - (fmaf((float)(3),n40_d[0]{=0e-3},n40_d[0]{=0e-3}) + fmaxf(0.0, n42[0]{=6000e-3})))
11229# f[0] := (e[0] * e[0]);
11330f[0]{=MAYBE UNINITIALIZED} = 49000e-3 = (e[0]{=-7000e-3} * e[0]{=-7000e-3})
114- # n60_g[0] := (f[0] / 2);
115- n60_g[0]{=MAYBE UNINITIALIZED} = 24500e-3 = (f[0]{=49000e-3} / (float)(2))
116- # n63[0] := (10 / f[0]);
117- n63[0]{=MAYBE UNINITIALIZED} = 204e-3 = ((float)(10) / f[0]{=49000e-3})
118- # n70_g[0] := (n60_g[0] + n63[0]);
119- n70_g[0]{=MAYBE UNINITIALIZED} = 24704e-3 = (n60_g[0]{=24500e-3} + n63[0]{=204e-3})
31+ # g[0] := ((f[0] / 2) + (10 / f[0]));
32+ g[0]{=MAYBE UNINITIALIZED} = 24704e-3 = ((f[0]{=49000e-3} / (float)(2)) + ((float)(10) / f[0]{=49000e-3}))
12033COMMENT: g zero grads and backprop
121- # n22_grad := 0
122- n22_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
12334# a_grad := 0
12435a_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
12536# b_grad := 0
12637b_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
12738# n4_c_grad := 0
12839n4_c_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
129- # n17_grad := 0
130- n17_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
13140# n19_c_grad := 0
13241n19_c_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
133- # n25_grad := 0
134- n25_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
135- # n27_grad := 0
136- n27_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
137- # n29_c_grad := 0
138- n29_c_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
139- # n42_grad := 0
140- n42_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
141- # n44_relu_grad := 0
142- n44_relu_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
143- # n31_grad := 0
144- n31_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
145- # n33_relu_grad := 0
146- n33_relu_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
147- # n7_grad := 0
148- n7_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
149- # n12_grad := 0
150- n12_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
15142# n14_d_grad := 0
15243n14_d_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
153- # n36_grad := 0
154- n36_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
155- # n38_grad := 0
156- n38_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
15744# n40_d_grad := 0
15845n40_d_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
159- # n47_grad := 0
160- n47_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
161- # n49_grad := 0
162- n49_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
163- # n51_d_grad := 0
164- n51_d_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
165- # e_grad := 0
166- e_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
16746# f_grad := 0
16847f_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
169- # n60_g_grad := 0
170- n60_g_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
171- # n63_grad := 0
172- n63_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
173- # n70_g_grad := 0
174- n70_g_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (float)(0)
175- # n70_g.grad[0] := 1;
176- n70_g_grad[0]{=MAYBE UNINITIALIZED} = 1000e-3 = (float)(1)
177- # n60_g.grad[0] := (n60_g.grad[0] + n70_g.grad[0]);
178- n60_g_grad[0]{=MAYBE UNINITIALIZED} = 1000e-3 = (n60_g_grad[0]{=0e-3} + n70_g_grad[0]{=1000e-3})
179- # n63.grad[0] := (n63.grad[0] + n70_g.grad[0]);
180- n63_grad[0]{=MAYBE UNINITIALIZED} = 1000e-3 = (n63_grad[0]{=0e-3} + n70_g_grad[0]{=1000e-3})
181- # n66[0] := (f[0] * f[0]);
182- n66[0]{=MAYBE UNINITIALIZED} = 2401000e-3 = (f[0]{=49000e-3} * f[0]{=49000e-3})
183- # n68[0] := -10;
184- n68[0]{=MAYBE UNINITIALIZED} = -10000e-3 = (float)(-10)
185- # n69[0] := (n68[0] / n66[0]);
186- n69[0]{=MAYBE UNINITIALIZED} = -4e-3 = (n68[0]{=-10000e-3} / n66[0]{=2401000e-3})
187- # f.grad[0] := fma(n63.grad[0], n69[0], f.grad[0]);
188- f_grad[0]{=MAYBE UNINITIALIZED} = -4e-3 = fmaf(n63_grad[0]{=1000e-3},n69[0]{=-4e-3},f_grad[0]{=0e-3})
189- # f.grad[0] := (f.grad[0] + (n60_g.grad[0] / 2));
190- f_grad[0]{=MAYBE UNINITIALIZED} = 495e-3 = (f_grad[0]{=-4e-3} + (n60_g_grad[0]{=1000e-3} / (float)(2)))
191- # n58[0] := (2 * e[0]);
192- n58[0]{=MAYBE UNINITIALIZED} = -14000e-3 = ((float)(2) * e[0]{=-7000e-3})
193- # e.grad[0] := fma(n58[0], f.grad[0], e.grad[0]);
194- e_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = fmaf(n58[0]{=-14000e-3},f_grad[0]{=495e-3},e_grad[0]{=0e-3})
195- # n29_c.grad[0] := (n29_c.grad[0] + e.grad[0]);
196- n29_c_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = (n29_c_grad[0]{=0e-3} + e_grad[0]{=-6941e-3})
197- # n51_d.grad[0] := (n51_d.grad[0] - e.grad[0]);
198- n51_d_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = (n51_d_grad[0]{=0e-3} - e_grad[0]{=-6941e-3})
199- # n49.grad[0] := (n49.grad[0] + n51_d.grad[0]);
200- n49_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = (n49_grad[0]{=0e-3} + n51_d_grad[0]{=6941e-3})
201- # n44_relu.grad[0] := (n44_relu.grad[0] + n51_d.grad[0]);
202- n44_relu_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = (n44_relu_grad[0]{=0e-3} + n51_d_grad[0]{=6941e-3})
203- # n40_d.grad[0] := (n40_d.grad[0] + n49.grad[0]);
204- n40_d_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = (n40_d_grad[0]{=0e-3} + n49_grad[0]{=6941e-3})
205- # n47.grad[0] := (n47.grad[0] + n49.grad[0]);
206- n47_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = (n47_grad[0]{=0e-3} + n49_grad[0]{=6941e-3})
207- # n40_d.grad[0] := fma(3, n47.grad[0], n40_d.grad[0]);
208- n40_d_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = fmaf((float)(3),n47_grad[0]{=6941e-3},n40_d_grad[0]{=6941e-3})
209- # n38.grad[0] := (n38.grad[0] + n40_d.grad[0]);
210- n38_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = (n38_grad[0]{=0e-3} + n40_d_grad[0]{=27766e-3})
211- # n33_relu.grad[0] := (n33_relu.grad[0] + n40_d.grad[0]);
212- n33_relu_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = (n33_relu_grad[0]{=0e-3} + n40_d_grad[0]{=27766e-3})
213- # n14_d.grad[0] := (n14_d.grad[0] + n38.grad[0]);
214- n14_d_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = (n14_d_grad[0]{=0e-3} + n38_grad[0]{=27766e-3})
215- # n36.grad[0] := (n36.grad[0] + n38.grad[0]);
216- n36_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = (n36_grad[0]{=0e-3} + n38_grad[0]{=27766e-3})
217- # n14_d.grad[0] := fma(n36.grad[0], 2, n14_d.grad[0]);
218- n14_d_grad[0]{=MAYBE UNINITIALIZED} = 83300e-3 = fmaf(n36_grad[0]{=27766e-3},(float)(2),n14_d_grad[0]{=27766e-3})
219- # n12.grad[0] := (n12.grad[0] + n14_d.grad[0]);
220- n12_grad[0]{=MAYBE UNINITIALIZED} = 83300e-3 = (n12_grad[0]{=0e-3} + n14_d_grad[0]{=83300e-3})
221- # n7.grad[0] := (n7.grad[0] + n14_d.grad[0]);
222- n7_grad[0]{=MAYBE UNINITIALIZED} = 83300e-3 = (n7_grad[0]{=0e-3} + n14_d_grad[0]{=83300e-3})
223- # a.grad[0] := fma(n12.grad[0], b[0], a.grad[0]);
224- a_grad[0]{=MAYBE UNINITIALIZED} = 166600e-3 = fmaf(n12_grad[0]{=83300e-3},b[0]{=2000e-3},a_grad[0]{=0e-3})
225- # b.grad[0] := fma(a[0], n12.grad[0], b.grad[0]);
226- b_grad[0]{=MAYBE UNINITIALIZED} = -333201e-3 = fmaf(a[0]{=-4000e-3},n12_grad[0]{=83300e-3},b_grad[0]{=0e-3})
227- # n10[0] := (b[0] * b[0]);
228- n10[0]{=MAYBE UNINITIALIZED} = 4000e-3 = (b[0]{=2000e-3} * b[0]{=2000e-3})
229- # n11[0] := (3 * n10[0]);
230- n11[0]{=MAYBE UNINITIALIZED} = 12000e-3 = ((float)(3) * n10[0]{=4000e-3})
231- # b.grad[0] := fma(n11[0], n7.grad[0], b.grad[0]);
232- b_grad[0]{=MAYBE UNINITIALIZED} = 666402e-3 = fmaf(n11[0]{=12000e-3},n7_grad[0]{=83300e-3},b_grad[0]{=-333201e-3})
233- # n31.grad[0] := (n31.grad[0] + relu_gate(n31[0], n33_relu.grad[0]));
234- n31_grad[0]{=MAYBE UNINITIALIZED} = 0e-3 = (n31_grad[0]{=0e-3} + ((n31[0]{=-2000e-3} > 0.0f) ? n33_relu_grad[0]{=27766e-3} : 0.0f))
235- # b.grad[0] := (b.grad[0] + n31.grad[0]);
236- b_grad[0]{=MAYBE UNINITIALIZED} = 666402e-3 = (b_grad[0]{=666402e-3} + n31_grad[0]{=0e-3})
237- # a.grad[0] := (a.grad[0] + n31.grad[0]);
238- a_grad[0]{=MAYBE UNINITIALIZED} = 166600e-3 = (a_grad[0]{=166600e-3} + n31_grad[0]{=0e-3})
239- # n42.grad[0] := (n42.grad[0] + relu_gate(n42[0], n44_relu.grad[0]));
240- n42_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = (n42_grad[0]{=0e-3} + ((n42[0]{=6000e-3} > 0.0f) ? n44_relu_grad[0]{=6941e-3} : 0.0f))
241- # b.grad[0] := (b.grad[0] + n42.grad[0]);
242- b_grad[0]{=MAYBE UNINITIALIZED} = 673344e-3 = (b_grad[0]{=666402e-3} + n42_grad[0]{=6941e-3})
243- # a.grad[0] := (a.grad[0] - n42.grad[0]);
244- a_grad[0]{=MAYBE UNINITIALIZED} = 159658e-3 = (a_grad[0]{=166600e-3} - n42_grad[0]{=6941e-3})
245- # n27.grad[0] := (n27.grad[0] + n29_c.grad[0]);
246- n27_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = (n27_grad[0]{=0e-3} + n29_c_grad[0]{=-6941e-3})
247- # n22.grad[0] := (n22.grad[0] + n29_c.grad[0]);
248- n22_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = (n22_grad[0]{=0e-3} + n29_c_grad[0]{=-6941e-3})
249- # n25.grad[0] := (n25.grad[0] + n27.grad[0]);
250- n25_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = (n25_grad[0]{=0e-3} + n27_grad[0]{=-6941e-3})
251- # n19_c.grad[0] := (n19_c.grad[0] + n27.grad[0]);
252- n19_c_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = (n19_c_grad[0]{=0e-3} + n27_grad[0]{=-6941e-3})
253- # n19_c.grad[0] := (n19_c.grad[0] + n25.grad[0]);
254- n19_c_grad[0]{=MAYBE UNINITIALIZED} = -13883e-3 = (n19_c_grad[0]{=-6941e-3} + n25_grad[0]{=-6941e-3})
255- # n17.grad[0] := (n17.grad[0] + n19_c.grad[0]);
256- n17_grad[0]{=MAYBE UNINITIALIZED} = -13883e-3 = (n17_grad[0]{=0e-3} + n19_c_grad[0]{=-13883e-3})
257- # n4_c.grad[0] := (n4_c.grad[0] + n17.grad[0]);
258- n4_c_grad[0]{=MAYBE UNINITIALIZED} = -13883e-3 = (n4_c_grad[0]{=0e-3} + n17_grad[0]{=-13883e-3})
259- # n4_c.grad[0] := (n4_c.grad[0] + n17.grad[0]);
260- n4_c_grad[0]{=MAYBE UNINITIALIZED} = -27766e-3 = (n4_c_grad[0]{=-13883e-3} + n17_grad[0]{=-13883e-3})
48+ # f.grad[0] := fma(1, (-10 / (f[0] * f[0])), f.grad[0]);
49+ f_grad[0]{=MAYBE UNINITIALIZED} = -4e-3 = fmaf((float)(1),((float)(-10) / (f[0]{=49000e-3} * f[0]{=49000e-3})),f_grad[0]{=0e-3})
50+ # f.grad[0] := (f.grad[0] + 0.5);
51+ f_grad[0]{=MAYBE UNINITIALIZED} = 495e-3 = (f_grad[0]{=-4e-3} + (float)(0.5))
52+ # n40_d.grad[0] := fma(-1, ((2 * e[0]) * f.grad[0]), n40_d.grad[0]);
53+ n40_d_grad[0]{=MAYBE UNINITIALIZED} = 6941e-3 = fmaf((float)(-1),(((float)(2) * e[0]{=-7000e-3}) * f_grad[0]{=495e-3}),n40_d_grad[0]{=0e-3})
54+ # n40_d.grad[0] := fma(3, (-1 * ((2 * e[0]) * f.grad[0])), n40_d.grad[0]);
55+ n40_d_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = fmaf((float)(3),((float)(-1) * (((float)(2) * e[0]{=-7000e-3}) * f_grad[0]{=495e-3})),n40_d_grad[0]{=6941e-3})
56+ # n14_d.grad[0] := (n14_d.grad[0] + n40_d.grad[0]);
57+ n14_d_grad[0]{=MAYBE UNINITIALIZED} = 27766e-3 = (n14_d_grad[0]{=0e-3} + n40_d_grad[0]{=27766e-3})
58+ # n14_d.grad[0] := fma(n40_d.grad[0], 2, n14_d.grad[0]);
59+ n14_d_grad[0]{=MAYBE UNINITIALIZED} = 83300e-3 = fmaf(n40_d_grad[0]{=27766e-3},(float)(2),n14_d_grad[0]{=27766e-3})
60+ # a.grad[0] := fma(n14_d.grad[0], b[0], a.grad[0]);
61+ a_grad[0]{=MAYBE UNINITIALIZED} = 166600e-3 = fmaf(n14_d_grad[0]{=83300e-3},b[0]{=2000e-3},a_grad[0]{=0e-3})
62+ # b.grad[0] := fma(a[0], n14_d.grad[0], b.grad[0]);
63+ b_grad[0]{=MAYBE UNINITIALIZED} = -333201e-3 = fmaf(a[0]{=-4000e-3},n14_d_grad[0]{=83300e-3},b_grad[0]{=0e-3})
64+ # b.grad[0] := fma((3 * (b[0] * b[0])), n14_d.grad[0], b.grad[0]);
65+ b_grad[0]{=MAYBE UNINITIALIZED} = 666402e-3 = fmaf(((float)(3) * (b[0]{=2000e-3} * b[0]{=2000e-3})),n14_d_grad[0]{=83300e-3},b_grad[0]{=-333201e-3})
66+ # b.grad[0] := (b.grad[0] + relu_gate(n31[0], n40_d.grad[0]));
67+ b_grad[0]{=MAYBE UNINITIALIZED} = 666402e-3 = (b_grad[0]{=666402e-3} + ((n31[0]{=-2000e-3} > 0.0f) ? n40_d_grad[0]{=27766e-3} : 0.0f))
68+ # a.grad[0] := (a.grad[0] + relu_gate(n31[0], n40_d.grad[0]));
69+ a_grad[0]{=MAYBE UNINITIALIZED} = 166600e-3 = (a_grad[0]{=166600e-3} + ((n31[0]{=-2000e-3} > 0.0f) ? n40_d_grad[0]{=27766e-3} : 0.0f))
70+ # b.grad[0] := (b.grad[0] + relu_gate(n42[0], (-1 * ((2 * e[0]) * f.grad[0]))));
71+ b_grad[0]{=MAYBE UNINITIALIZED} = 673344e-3 = (b_grad[0]{=666402e-3} + ((n42[0]{=6000e-3} > 0.0f) ? ((float)(-1) * (((float)(2) * e[0]{=-7000e-3}) * f_grad[0]{=495e-3})) : 0.0f))
72+ # a.grad[0] := (a.grad[0] - relu_gate(n42[0], (-1 * ((2 * e[0]) * f.grad[0]))));
73+ a_grad[0]{=MAYBE UNINITIALIZED} = 159658e-3 = (a_grad[0]{=166600e-3} - ((n42[0]{=6000e-3} > 0.0f) ? ((float)(-1) * (((float)(2) * e[0]{=-7000e-3}) * f_grad[0]{=495e-3})) : 0.0f))
74+ # n19_c.grad[0] := fma((2 * e[0]), f.grad[0], n19_c.grad[0]);
75+ n19_c_grad[0]{=MAYBE UNINITIALIZED} = -6941e-3 = fmaf(((float)(2) * e[0]{=-7000e-3}),f_grad[0]{=495e-3},n19_c_grad[0]{=0e-3})
76+ # n19_c.grad[0] := fma((2 * e[0]), f.grad[0], n19_c.grad[0]);
77+ n19_c_grad[0]{=MAYBE UNINITIALIZED} = -13883e-3 = fmaf(((float)(2) * e[0]{=-7000e-3}),f_grad[0]{=495e-3},n19_c_grad[0]{=-6941e-3})
78+ # n4_c.grad[0] := (n4_c.grad[0] + n19_c.grad[0]);
79+ n4_c_grad[0]{=MAYBE UNINITIALIZED} = -13883e-3 = (n4_c_grad[0]{=0e-3} + n19_c_grad[0]{=-13883e-3})
80+ # n4_c.grad[0] := (n4_c.grad[0] + n19_c.grad[0]);
81+ n4_c_grad[0]{=MAYBE UNINITIALIZED} = -27766e-3 = (n4_c_grad[0]{=-13883e-3} + n19_c_grad[0]{=-13883e-3})
26182# a.grad[0] := (a.grad[0] + n4_c.grad[0]);
26283a_grad[0]{=MAYBE UNINITIALIZED} = 131892e-3 = (a_grad[0]{=159658e-3} + n4_c_grad[0]{=-27766e-3})
26384# b.grad[0] := (b.grad[0] + n4_c.grad[0]);
26485b_grad[0]{=MAYBE UNINITIALIZED} = 645577e-3 = (b_grad[0]{=673344e-3} + n4_c_grad[0]{=-27766e-3})
265- # a.grad[0] := fma(-1, n22 .grad[0], a.grad[0]);
266- a_grad[0]{=MAYBE UNINITIALIZED} = 138833e-3 = fmaf((float)(-1),n22_grad [0]{=-6941e -3},a_grad[0]{=131892e-3})
86+ # a.grad[0] := fma(-1, ((2 * e[0]) * f .grad[0]) , a.grad[0]);
87+ a_grad[0]{=MAYBE UNINITIALIZED} = 138833e-3 = fmaf((float)(-1),(((float)(2) * e [0]{=-7000e -3}) * f_grad[0]{=495e-3}) ,a_grad[0]{=131892e-3})
26788COMMENT: end
26889COMMENT: end
0 commit comments