|
| 1 | +open! Base |
| 2 | +open! Ocannl |
| 3 | +open! Nn_blocks.DSL_modules |
| 4 | +open Stdio |
| 5 | + |
| 6 | +let conv2d = Nn_blocks.conv2d |
| 7 | + |
| 8 | +(** Test that conv2d with use_padding=true preserves spatial dimensions. |
| 9 | +
|
| 10 | + With use_padding=true, the output spatial dimensions should match input/stride. |
| 11 | + For stride=1 and any kernel_size, output should have the same spatial dims as input. *) |
| 12 | +let test_conv2d_padding_preserves_dims () = |
| 13 | + printf "Testing conv2d with use_padding=true preserves dimensions...\n%!"; |
| 14 | + Tensor.unsafe_reinitialize (); |
| 15 | + |
| 16 | + (* Create a simple 5x5 input with 1 channel *) |
| 17 | + let input = TDSL.range_of_shape ~output_dims:[ 5; 5; 1 ] () in |
| 18 | + |
| 19 | + (* Apply conv2d with kernel_size=3, stride=1, use_padding=true *) |
| 20 | + let%op output = conv2d ~label:["test_conv"] ~kernel_size:3 ~stride:1 ~use_padding:true () input in |
| 21 | + |
| 22 | + let ctx = Context.auto () in |
| 23 | + Train.set_hosted output.value; |
| 24 | + ignore (Train.forward_once ctx output); |
| 25 | + |
| 26 | + printf "Input shape: 5x5x1\n%!"; |
| 27 | + printf "Kernel size: 3x3\n%!"; |
| 28 | + printf "Stride: 1\n%!"; |
| 29 | + printf "use_padding: true\n%!"; |
| 30 | + printf "Expected output spatial dims: 5x5 (same as input)\n%!"; |
| 31 | + Train.printf ~here:[%here] ~with_code:false ~with_grad:false output; |
| 32 | + printf "\n%!" |
| 33 | + |
| 34 | +(** Test that conv2d with use_padding=false reduces spatial dimensions. |
| 35 | +
|
| 36 | + With use_padding=false, the output spatial dimensions should be reduced by (kernel_size - 1). |
| 37 | + For 5x5 input, kernel_size=3, stride=1: output should be 3x3. *) |
| 38 | +let test_conv2d_no_padding_reduces_dims () = |
| 39 | + printf "Testing conv2d with use_padding=false reduces dimensions...\n%!"; |
| 40 | + Tensor.unsafe_reinitialize (); |
| 41 | + |
| 42 | + (* Create a simple 5x5 input with 1 channel *) |
| 43 | + let input = TDSL.range_of_shape ~output_dims:[ 5; 5; 1 ] () in |
| 44 | + |
| 45 | + (* Apply conv2d with kernel_size=3, stride=1, use_padding=false *) |
| 46 | + let%op output = conv2d ~label:["test_conv"] ~kernel_size:3 ~stride:1 ~use_padding:false () input in |
| 47 | + |
| 48 | + let ctx = Context.auto () in |
| 49 | + Train.set_hosted output.value; |
| 50 | + ignore (Train.forward_once ctx output); |
| 51 | + |
| 52 | + printf "Input shape: 5x5x1\n%!"; |
| 53 | + printf "Kernel size: 3x3\n%!"; |
| 54 | + printf "Stride: 1\n%!"; |
| 55 | + printf "use_padding: false\n%!"; |
| 56 | + printf "Expected output spatial dims: 3x3 (reduced by kernel_size-1)\n%!"; |
| 57 | + Train.printf ~here:[%here] ~with_code:false ~with_grad:false output; |
| 58 | + printf "\n%!" |
| 59 | + |
| 60 | +(** Test conv2d with stride=2 and use_padding=true. |
| 61 | +
|
| 62 | + With stride=2 and use_padding=true, output dims should be ceil(input/stride). |
| 63 | + For 6x6 input, stride=2: output should be 3x3. *) |
| 64 | +let test_conv2d_stride_with_padding () = |
| 65 | + printf "Testing conv2d with stride=2 and use_padding=true...\n%!"; |
| 66 | + Tensor.unsafe_reinitialize (); |
| 67 | + |
| 68 | + (* Create a 6x6 input with 1 channel *) |
| 69 | + let input = TDSL.range_of_shape ~output_dims:[ 6; 6; 1 ] () in |
| 70 | + |
| 71 | + (* Apply conv2d with kernel_size=3, stride=2, use_padding=true *) |
| 72 | + let%op output = conv2d ~label:["test_conv"] ~kernel_size:3 ~stride:2 ~use_padding:true () input in |
| 73 | + |
| 74 | + let ctx = Context.auto () in |
| 75 | + Train.set_hosted output.value; |
| 76 | + ignore (Train.forward_once ctx output); |
| 77 | + |
| 78 | + printf "Input shape: 6x6x1\n%!"; |
| 79 | + printf "Kernel size: 3x3\n%!"; |
| 80 | + printf "Stride: 2\n%!"; |
| 81 | + printf "use_padding: true\n%!"; |
| 82 | + printf "Expected output spatial dims: 3x3 (input/stride)\n%!"; |
| 83 | + Train.printf ~here:[%here] ~with_code:false ~with_grad:false output; |
| 84 | + printf "\n%!" |
| 85 | + |
| 86 | +(** Test conv2d with stride=2 and use_padding=false. |
| 87 | +
|
| 88 | + With stride=2 and use_padding=false, output dims should be (input - kernel_size + 1) / stride. |
| 89 | + For 6x6 input, kernel_size=3, stride=2: (6-3+1)/2 = 2, so output should be 2x2. *) |
| 90 | +let test_conv2d_stride_without_padding () = |
| 91 | + printf "Testing conv2d with stride=2 and use_padding=false...\n%!"; |
| 92 | + Tensor.unsafe_reinitialize (); |
| 93 | + |
| 94 | + (* Create a 6x6 input with 1 channel *) |
| 95 | + let input = TDSL.range_of_shape ~output_dims:[ 6; 6; 1 ] () in |
| 96 | + |
| 97 | + (* Apply conv2d with kernel_size=3, stride=2, use_padding=false *) |
| 98 | + let%op output = conv2d ~label:["test_conv"] ~kernel_size:3 ~stride:2 ~use_padding:false () input in |
| 99 | + |
| 100 | + let ctx = Context.auto () in |
| 101 | + Train.set_hosted output.value; |
| 102 | + ignore (Train.forward_once ctx output); |
| 103 | + |
| 104 | + printf "Input shape: 6x6x1\n%!"; |
| 105 | + printf "Kernel size: 3x3\n%!"; |
| 106 | + printf "Stride: 2\n%!"; |
| 107 | + printf "use_padding: false\n%!"; |
| 108 | + printf "Expected output spatial dims: 2x2 ((input-kernel+1)/stride)\n%!"; |
| 109 | + Train.printf ~here:[%here] ~with_code:false ~with_grad:false output; |
| 110 | + printf "\n%!" |
| 111 | + |
| 112 | +let () = |
| 113 | + test_conv2d_padding_preserves_dims (); |
| 114 | + test_conv2d_no_padding_reduces_dims (); |
| 115 | + test_conv2d_stride_with_padding (); |
| 116 | + test_conv2d_stride_without_padding (); |
| 117 | + printf "All conv padding tests completed!\n%!" |
0 commit comments