|
| 1 | +open Base |
| 2 | +open Ocannl |
| 3 | +module Tn = Arrayjit.Tnode |
| 4 | +module IDX = Train.IDX |
| 5 | +module TDSL = Operation.TDSL |
| 6 | +module NTDSL = Operation.NTDSL |
| 7 | +module CDSL = Train.CDSL |
| 8 | +module Utils = Arrayjit.Utils |
| 9 | +module Rand = Arrayjit.Rand.Lib |
| 10 | + |
| 11 | +let main () = |
| 12 | + let seed = 1 in |
| 13 | + let hid_dim = 16 in |
| 14 | + (* let hid_dim = 4 in *) |
| 15 | + let batch_size = 120 in |
| 16 | + (* let batch_size = 60 in *) |
| 17 | + (* let batch_size = 20 in *) |
| 18 | + let len = batch_size * 20 in |
| 19 | + let init_lr = 0.1 in |
| 20 | + (* let epochs = 10 in *) |
| 21 | + let epochs = 20 in |
| 22 | + (* let epochs = 1 in *) |
| 23 | + let noise () = Rand.float_range (-0.1) 0.1 in |
| 24 | + let moons_flat = |
| 25 | + Array.concat_map (Array.create ~len ()) |
| 26 | + ~f: |
| 27 | + Float.( |
| 28 | + fun () -> |
| 29 | + let i = Rand.int len in |
| 30 | + let v = of_int i * pi / of_int len in |
| 31 | + let c = cos v and s = sin v in |
| 32 | + [| c + noise (); s + noise (); 1.0 - c + noise (); 0.5 - s + noise () |]) |
| 33 | + in |
| 34 | + let moons_flat ~b = TDSL.init_const ~l:"moons_flat" ~b ~o:[ 2 ] moons_flat in |
| 35 | + let moons_classes = Array.init (len * 2) ~f:(fun i -> if i % 2 = 0 then 1. else -1.) in |
| 36 | + let moons_classes ~b = TDSL.init_const ~l:"moons_classes" ~b ~o:[ 1 ] moons_classes in |
| 37 | + let%op mlp x = "b3" + ("w3" * ?/("b2" hid_dim + ("w2" * ?/("b1" hid_dim + ("w1" * x))))) in |
| 38 | + (* let%op mlp x = "b" + ("w" * x) in *) |
| 39 | + let%op loss_fn ~output ~expectation = ?/(!..1 - (expectation *. output)) in |
| 40 | + (* We don't need a regression loss formula thanks to weight_decay built into the sgd_update |
| 41 | + computation. *) |
| 42 | + let weight_decay = 0.0002 in |
| 43 | + (* So that we can inspect them. *) |
| 44 | + let backend = Arrayjit.Backends.fresh_backend () in |
| 45 | + let per_batch_callback ~at_batch ~at_step ~learning_rate ~batch_loss ~epoch_loss = |
| 46 | + if (at_batch + 1) % 20 = 0 then |
| 47 | + Stdio.printf "Batch=%d, step=%d, lr=%f, batch loss=%f, epoch loss=%f\n%!" at_batch at_step |
| 48 | + learning_rate batch_loss epoch_loss |
| 49 | + in |
| 50 | + (* Tn.print_accessible_headers (); *) |
| 51 | + let per_epoch_callback ~at_step ~at_epoch ~learning_rate ~epoch_loss = |
| 52 | + Stdio.printf "Epoch=%d, step=%d, lr=%f, epoch loss=%f\n%!" at_epoch at_step learning_rate |
| 53 | + epoch_loss |
| 54 | + in |
| 55 | + let module Backend = (val backend) in |
| 56 | + let inputs, outputs, _model_result, infer_callback, _batch_losses, _epoch_losses, _learning_rates |
| 57 | + = |
| 58 | + Train.example_train_loop ~seed ~batch_size ~max_num_devices:(batch_size / 2) ~init_lr |
| 59 | + ~data_len:len ~epochs ~inputs:moons_flat ~outputs:moons_classes ~model:mlp ~loss_fn |
| 60 | + ~weight_decay ~per_batch_callback ~per_epoch_callback |
| 61 | + (module Backend) |
| 62 | + () |
| 63 | + in |
| 64 | + let points = Tensor.value_2d_points ~xdim:0 ~ydim:1 inputs in |
| 65 | + let classes = Tensor.value_1d_points ~xdim:0 outputs in |
| 66 | + let points1, points2 = Array.partitioni_tf points ~f:Float.(fun i _ -> classes.(i) > 0.) in |
| 67 | + let callback (x, y) = Float.((infer_callback [| x; y |]).(0) >= 0.) in |
| 68 | + let plot_moons = |
| 69 | + let open PrintBox_utils in |
| 70 | + plot ~no_axes:true ~size:(120, 40) |
| 71 | + [ |
| 72 | + Scatterplot { points = points1; pixel = "#" }; |
| 73 | + Scatterplot { points = points2; pixel = "%" }; |
| 74 | + Boundary_map { pixel_false = "."; pixel_true = "*"; callback }; |
| 75 | + ] |
| 76 | + in |
| 77 | + Stdio.printf "\nHalf-moons scatterplot and decision boundary:\n"; |
| 78 | + PrintBox_text.output Stdio.stdout plot_moons |
| 79 | + |
| 80 | + |
| 81 | +let () = |
| 82 | + (* Get some insights. *) |
| 83 | + Utils.set_log_level 1; |
| 84 | + Exn.protect ~f:main ~finally:Utils.restore_settings |
0 commit comments