Purpose
- Quickly migrate CSV data from the project data/folder into a remote API-backed database using Python (pandas + requests).
- Keep sensitive values out of source control via a .envfile.
Quick setup
- Create a Python virtual environment and install dependencies:
- 
Install virtualenv if not already installed: pip install --user virtualenv
- 
Create the virtual environment using virtualenv: python3 -m virtualenv .venv
- 
Activate the virtual environment: - macOS / Linux:
source .venv/bin/activate
- Windows (PowerShell):
.venv\Scripts\Activate.ps1
- Windows (cmd):
.venv\Scripts\activate.bat
 
- macOS / Linux:
- 
Install dependencies: pip install -r requirements.txt
- 
requirements.txt should include (examples): pandas requests python-dotenv
- 
Recommendation: pin versions in requirements.txt for reproducibility (e.g., pandas==1.5.3). 
- 
Create the data directory - mkdir data
- Place your CSV files in data/. Example names:users.csv,transactions.csv,products.csv.
 Note: If those CSVs are large, do not commit them directly. Use one of: - Add data/to.gitignore
- Use Git LFS for large files (git lfs track "data/*")
 
Create the .env file
- 
Create a file named .envat the repo root. Example contents (#file:.env):API_BASE_URL=https://api.example.com API_TOKEN=your_bearer_token_here OTHER_OPTIONAL_VAR=value
How to run the loader
- The recommended approach is a small script (example: scripts/load_data.py) that:- Loads environment variables with python-dotenv
- Iterates CSVs in data/
- Uses pandas.read_csv to load chunks or full frames (use chunksize for large files)
- Transforms/validates rows as needed
- Sends rows or batches to the API using requests with Authorization: Bearer <API_TOKEN>
- Implements retries, backoff, and logging
 
Minimal loader example (conceptual)
# scripts/load_data.py
# Loads .env, iterates CSVs, and posts batches to API.
# Use proper error handling, logging, and chunking for large files.
Logging and errors
- Use the loggingmodule to record progress and errors.
- Catch and handle: network errors (requests.exceptions), JSON/parse errors, and data validation issues.
- Add exponential backoff and retry limits for transient API failures.
Conversation log requirement
- For every interaction create a conversation summary file:
- .github/conversations/conversation_<unique_id>.md
- Include: purpose, files added/changed, environment variables required, any manual steps.
 
Recommendations & next steps
- Add requirements.txtwith pinned versions for reproducibility.
- Implement chunked processing (pandas.read_csv with chunksize) for very large CSVs.
- Consider validating schemas (pydantic or custom validators) before sending data.
- Add unit/integration tests or a dry-run mode that validates payloads without posting.
- Store really-large raw data outside Git (S3, external storage) and reference via metadata if needed.
Summary
- Create data/and put CSVs there (or keep externally and avoid committing).
- Create .envwith API_BASE_URL and API_TOKEN.
- Implement a modular script using pandas + requests with logging, retries, and error handling.
- Log this conversation under .github/conversations/as required.