@@ -21,7 +21,7 @@ This means that we need to go through the vector $$\mathcal{O}(n^2)$$ times with
2121{% sample lang="py" %}
2222[ import:4-9, lang:"python"] ( code/python/bubblesort.py )
2323{% sample lang="m" %}
24- [ import:11-23 , lang:"matlab"] ( code/matlab/bubblesort.m )
24+ [ import:1-13 , lang:"matlab"] ( code/matlab/bubblesort.m )
2525{% sample lang="hs" %}
2626[ import, lang:"haskell"] ( code/haskell/bubbleSort.hs )
2727{% sample lang="cpp" %}
@@ -33,7 +33,7 @@ This means that we need to go through the vector $$\mathcal{O}(n^2)$$ times with
3333{% sample lang="go" %}
3434[ import:7-21, lang:"golang"] ( code/go/bubbleSort.go )
3535{% sample lang="racket" %}
36- [ import:6-19, lang:"racket "] ( code/racket/bubbleSort.rkt )
36+ [ import:6-19, lang:"scheme "] ( code/racket/bubbleSort.rkt )
3737{% sample lang="swift" %}
3838[ import:1-13, lang:"swift"] ( code/swift/bubblesort.swift )
3939{% sample lang="ti83b" %}
@@ -84,13 +84,13 @@ Trust me, there are plenty of more complicated algorithms that do precisely the
8484{% sample lang="go" %}
8585[ import, lang:"golang"] ( code/go/bubbleSort.go )
8686{% sample lang="racket" %}
87- [ import, lang:"racket "] ( code/racket/bubbleSort.rkt )
87+ [ import, lang:"scheme "] ( code/racket/bubbleSort.rkt )
8888{% sample lang="swift" %}
8989[ import, lang:"swift"] ( code/swift/bubblesort.swift )
9090{% sample lang="ti83b" %}
9191[ import, lang:"ti-83_basic"] ( code/ti83basic/BUBLSORT.txt )
9292{% sample lang="ruby" %}
93- [ import, lang: ruby "] ( code/ruby/bubble.rb )
93+ [ import, lang:" ruby"] ( code/ruby/bubble.rb )
9494{% sample lang="crystal" %}
9595[ import, lang:"crystal"] ( code/crystal/bubble.cr )
9696{% sample lang="php" %}
0 commit comments