Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
81 changes: 57 additions & 24 deletions datafusion/functions-aggregate/src/sum.rs
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,18 @@ macro_rules! downcast_sum {
};
}

/// Properties for [`Sum`]
#[derive(Default, Debug, PartialEq, Eq, Hash)]
pub struct SumProperties {
/// Whether to maintain the precision of decimal types
/// If `false`, the new precision of this [`Sum`] will be calculated as
/// `MIN(<max decimal precision>, <precision of first argument> + 10)` (similar to Spark).
/// If `true`, the new precision will be the same as the precision of the first argument.
///
/// The default value is `false`.
pub maintains_decimal_precision: bool,
}

#[user_doc(
doc_section(label = "General Functions"),
description = "Returns the sum of all values in the specified column.",
Expand All @@ -125,12 +137,21 @@ macro_rules! downcast_sum {
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct Sum {
signature: Signature,
properties: SumProperties,
}

impl Sum {
pub fn new() -> Self {
Self {
signature: Signature::user_defined(Volatility::Immutable),
properties: SumProperties::default(),
}
}

pub fn new_with_properties(properties: SumProperties) -> Self {
Self {
signature: Signature::user_defined(Volatility::Immutable),
properties,
}
}
}
Expand Down Expand Up @@ -180,34 +201,46 @@ impl AggregateUDFImpl for Sum {
}

fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
macro_rules! new_with_precision {
($dt:expr,$max:expr,$precision:expr,$scale:expr) => {
if self.properties.maintains_decimal_precision {
$dt($precision, $scale)
} else {
// In Spark, the resulting decimal precision is bounded
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
let new_precision = $max.min($precision + 10);
$dt(new_precision, $scale)
}
};
}
match &arg_types[0] {
DataType::Int64 => Ok(DataType::Int64),
DataType::UInt64 => Ok(DataType::UInt64),
DataType::Float64 => Ok(DataType::Float64),
DataType::Decimal32(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+10), s)
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
let new_precision = DECIMAL32_MAX_PRECISION.min(*precision + 10);
Ok(DataType::Decimal32(new_precision, *scale))
}
DataType::Decimal64(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+10), s)
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
let new_precision = DECIMAL64_MAX_PRECISION.min(*precision + 10);
Ok(DataType::Decimal64(new_precision, *scale))
}
DataType::Decimal128(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+10), s)
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 10);
Ok(DataType::Decimal128(new_precision, *scale))
}
DataType::Decimal256(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+10), s)
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
let new_precision = DECIMAL256_MAX_PRECISION.min(*precision + 10);
Ok(DataType::Decimal256(new_precision, *scale))
}
DataType::Decimal32(precision, scale) => Ok(new_with_precision!(
DataType::Decimal32,
DECIMAL32_MAX_PRECISION,
*precision,
*scale
)),
DataType::Decimal64(precision, scale) => Ok(new_with_precision!(
DataType::Decimal64,
DECIMAL64_MAX_PRECISION,
*precision,
*scale
)),
DataType::Decimal128(precision, scale) => Ok(new_with_precision!(
DataType::Decimal128,
DECIMAL128_MAX_PRECISION,
*precision,
*scale
)),
DataType::Decimal256(precision, scale) => Ok(new_with_precision!(
DataType::Decimal256,
DECIMAL256_MAX_PRECISION,
*precision,
*scale
)),
other => {
exec_err!("[return_type] SUM not supported for {}", other)
}
Expand Down
1 change: 1 addition & 0 deletions datafusion/optimizer/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ chrono = { workspace = true }
datafusion-common = { workspace = true, default-features = true }
datafusion-expr = { workspace = true }
datafusion-expr-common = { workspace = true }
datafusion-functions-aggregate = { workspace = true }
datafusion-physical-expr = { workspace = true }
indexmap = { workspace = true }
itertools = { workspace = true }
Expand Down
55 changes: 54 additions & 1 deletion datafusion/optimizer/src/single_distinct_to_groupby.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,12 +27,14 @@ use datafusion_common::{
};
use datafusion_expr::builder::project;
use datafusion_expr::expr::AggregateFunctionParams;
use datafusion_expr::AggregateUDF;
use datafusion_expr::{
col,
expr::AggregateFunction,
logical_plan::{Aggregate, LogicalPlan},
Expr,
};
use datafusion_functions_aggregate::sum::{Sum, SumProperties};

/// single distinct to group by optimizer rule
/// ```text
Expand Down Expand Up @@ -219,7 +221,7 @@ impl OptimizerRule for SingleDistinctToGroupBy {
.alias(&alias_str),
);
Ok(Expr::AggregateFunction(AggregateFunction::new_udf(
func,
rewrite_outer_aggregate_func(func),
vec![col(&alias_str)],
false,
None,
Expand Down Expand Up @@ -277,13 +279,34 @@ impl OptimizerRule for SingleDistinctToGroupBy {
}
}

/// Rewrite the outer aggregate functions that may require special handling
/// when duplicated to accommodate two-phase aggregation.
fn rewrite_outer_aggregate_func(func: Arc<AggregateUDF>) -> Arc<AggregateUDF> {
let inner = func.inner();

if inner.as_any().is::<Sum>() {
// For SUM, we should maintain the precision from the initial aggregation.
// There should be no precision expansion in the second phase.
return Arc::new(AggregateUDF::new_from_impl(Sum::new_with_properties(
SumProperties {
maintains_decimal_precision: true,
},
)));
}

func
}

#[cfg(test)]
mod tests {
use super::*;
use crate::assert_optimized_plan_eq_display_indent_snapshot;
use crate::test::*;
use arrow::datatypes::{DataType, Field, Schema};
use datafusion_expr::expr::GroupingSet;
use datafusion_expr::table_scan;
use datafusion_expr::ExprFunctionExt;
use datafusion_expr::LogicalPlanBuilderOptions;
use datafusion_expr::{lit, logical_plan::builder::LogicalPlanBuilder};
use datafusion_functions_aggregate::count::count_udaf;
use datafusion_functions_aggregate::expr_fn::{count, count_distinct, max, min, sum};
Expand Down Expand Up @@ -719,6 +742,36 @@ mod tests {
)
}

#[test]
fn sum_maintains_decimal_precision() -> Result<()> {
let schema = Schema::new(vec![
Field::new("o_orderkey", DataType::Int32, false),
Field::new("o_totalprice", DataType::Decimal128(15, 2), false),
]);

let table_scan = table_scan(Some("test"), &schema, None)?.build()?;
let builder = LogicalPlanBuilder::from(table_scan).with_options(
LogicalPlanBuilderOptions::new().with_add_implicit_group_by_exprs(true),
);

let plan = builder
.aggregate(
Vec::<Expr>::new(),
vec![sum(col("o_totalprice")), count_distinct(col("o_orderkey"))],
)?
.build()?;

assert_optimized_plan_equal!(
plan,
@r"
Projection: sum(alias2) AS sum(test.o_totalprice), count(alias1) AS count(DISTINCT test.o_orderkey) [sum(test.o_totalprice):Decimal128(25, 2);N, count(DISTINCT test.o_orderkey):Int64]
Aggregate: groupBy=[[]], aggr=[[sum(alias2), count(alias1)]] [sum(alias2):Decimal128(25, 2);N, count(alias1):Int64]
Aggregate: groupBy=[[test.o_orderkey AS alias1]], aggr=[[sum(test.o_totalprice) AS alias2]] [alias1:Int32, alias2:Decimal128(25, 2);N]
TableScan: test [o_orderkey:Int32, o_totalprice:Decimal128(15, 2)]
"
)
}

#[test]
fn aggregate_with_filter_and_order_by() -> Result<()> {
let table_scan = test_table_scan()?;
Expand Down
28 changes: 28 additions & 0 deletions datafusion/sqllogictest/test_files/aggregate.slt
Original file line number Diff line number Diff line change
Expand Up @@ -7931,3 +7931,31 @@ NULL NULL NULL NULL

statement ok
drop table distinct_avg;


# Regression test for https://github.com/apache/datafusion/issues/17699

statement ok
CREATE TABLE orders (
o_orderkey INT,
o_totalprice DECIMAL(15, 2)
);

statement ok
INSERT INTO orders VALUES (1, 10.00);

query R
SELECT total_spent
FROM (
SELECT
SUM(o_totalprice) AS total_spent,
COUNT(DISTINCT o_orderkey) AS order_count
FROM orders
) t
WHERE total_spent > 0;
----
10


statement ok
DROP TABLE orders;