Skip to content

arrehman3/MCP

Repository files navigation

FastAPI + MCP Server Integration with Gemini CLI

This project demonstrates how to build a FastAPI application, wrap it as an MCP (Model Context Protocol) Server, and integrate it with Gemini CLI for direct tool calling.

Project Structure

├── sample_app.py      # FastAPI application with user and task management
├── mcp_server.py      # MCP server that wraps the FastAPI app
├── requirements.txt   # Python dependencies
├── setup.sh          # Setup script
├── demo.sh           # Interactive demonstration script
├── test_integration.py # Integration test script
├── venv/             # Python virtual environment
└── README.md         # This file

Features

FastAPI Application (sample_app.py)

  • User Management: Create, read users with name, email, and age
  • Task Management: Create, read, update, delete tasks
  • Statistics: Get overview of users and tasks
  • Health Check: Basic health monitoring endpoint

MCP Server (mcp_server.py)

  • Tool Integration: Exposes all FastAPI endpoints as MCP tools
  • Error Handling: Proper HTTP error handling and logging
  • Type Safety: Full type annotations and schema validation

Available MCP Tools

  1. get_app_info - Get basic app information
  2. get_health - Check app health status
  3. get_users - List all users
  4. create_user - Create a new user
  5. get_user - Get user by ID
  6. get_tasks - List all tasks
  7. create_task - Create a new task
  8. get_task - Get task by ID
  9. update_task - Update an existing task
  10. delete_task - Delete a task
  11. get_stats - Get user and task statistics

Quick Start

Option 1: Automated Demo

./demo.sh

This interactive script will guide you through the entire setup and testing process.

Option 2: Manual Setup

1. Run Setup Script

./setup.sh

2. Start the FastAPI Application

source venv/bin/activate
python sample_app.py

The FastAPI app will be available at http://localhost:8000

3. Start the MCP Server (in another terminal)

source venv/bin/activate
python mcp_server.py

4. Install Gemini CLI

npm install -g @google/gemini-cli@latest

5. Add MCP Server to Gemini CLI

gemini mcp add fastapi-sample stdio python $(pwd)/mcp_server.py

6. Test the Integration

# List available tools
gemini mcp list

# Call a tool
gemini call fastapi-sample get_app_info

# Create a user
gemini call fastapi-sample create_user --name "John Doe" --email "john@example.com" --age 30

# Get all users
gemini call fastapi-sample get_users

# Create a task
gemini call fastapi-sample create_task --title "Learn MCP" --description "Study Model Context Protocol" --user_id 1

# Get statistics
gemini call fastapi-sample get_stats

Manual Setup

If you prefer to set up manually:

1. Install Python Dependencies

pip3 install -r requirements.txt

2. Start Services

  • FastAPI app: python3 sample_app.py
  • MCP server: python3 mcp_server.py

3. Install and Configure Gemini CLI

npm install -g @google/gemini-cli@latest
gemini mcp add fastapi-sample stdio python3 /path/to/mcp_server.py

API Endpoints

The FastAPI application provides the following REST endpoints:

  • GET / - App information
  • GET /health - Health check
  • GET /users - List users
  • POST /users - Create user
  • GET /users/{user_id} - Get user by ID
  • GET /tasks - List tasks
  • POST /tasks - Create task
  • GET /tasks/{task_id} - Get task by ID
  • PUT /tasks/{task_id} - Update task
  • DELETE /tasks/{task_id} - Delete task
  • GET /stats - Get statistics

MCP Tool Examples

Create and Manage Users

# Create a user
gemini call fastapi-sample create_user --name "Alice Smith" --email "alice@example.com" --age 25

# Get user by ID
gemini call fastapi-sample get_user --user_id 1

# List all users
gemini call fastapi-sample get_users

Create and Manage Tasks

# Create a task
gemini call fastapi-sample create_task --title "Complete project" --description "Finish the MCP integration" --user_id 1

# Update a task
gemini call fastapi-sample update_task --task_id 1 --title "Complete project" --description "Finish the MCP integration" --user_id 1 --completed true

# Delete a task
gemini call fastapi-sample delete_task --task_id 1

Get Statistics

gemini call fastapi-sample get_stats

Troubleshooting

Common Issues

  1. Port already in use: Make sure port 8000 is available for the FastAPI app
  2. MCP server connection failed: Ensure the FastAPI app is running before starting the MCP server
  3. Gemini CLI not found: Make sure Node.js and npm are installed, then install Gemini CLI globally

Debug Mode

To run the FastAPI app in debug mode:

uvicorn sample_app:app --reload --host 0.0.0.0 --port 8000

Check MCP Server Status

gemini mcp list

Development

Adding New Endpoints

  1. Add the endpoint to sample_app.py
  2. Add the corresponding tool to mcp_server.py in the handle_list_tools() function
  3. Add the tool handler in the handle_call_tool() function

Testing

You can test the FastAPI endpoints directly using curl:

# Test app info
curl http://localhost:8000/

# Create a user
curl -X POST http://localhost:8000/users \
  -H "Content-Type: application/json" \
  -d '{"name": "Test User", "email": "test@example.com", "age": 30}'

# Get users
curl http://localhost:8000/users

License

This project is for educational purposes and demonstrates MCP integration patterns.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages