Skip to content

asAmrita/SAC_Object_Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Project Details

Pipeline based on SAC_Object_Detection project Journal: Evolving Systems DOI: 10.1007/s12530-025-09749-y Title: Scale-invariant object detection by adaptive convolution with unified global-local context

Supported Models

  • efficientdet-d0.pth
  • efficientdet-d1.pth
  • efficientdet-d2.pth
  • efficientdet-d3.pth
  • efficientdet-d4.pth
  • efficientdet-d5.pth
  • efficientdet-d6.pth
  • efficientdet-d7.pth

Supported Models

  • EfficientDet-d1+SAC.pth
  • EfficientDet-d2+SAC.pth
  • EfficientDet_d1+SAC+Feature.pth
  • EfficientDet_d2+SAC+Feature.pth
  • EfficientDet_d1+SAC+Global+Feature.pth
  • EfficientDet_d2+SAC+Global+Feature.pth

Installation

Supports

  • Python 3.9
  • Cuda 9.0, 11.0 (Other cuda version support is experimental)

cd installation

cat requirements_cuda9.0.txt | xargs -n 1 -L 1 pip install

Functional Documentation

Pipeline

  • Load Dataset

gtf.set_train_dataset(root_dir, coco_dir, img_dir, set_dir, classes_list=[ ], batch_size=2, num_workers=3)

  • Load Model

gtf.set_model(model_name="efficientdet-d3.pth", num_gpus=1, freeze_head=False);

  • Set Hyper Parameters

gtf.set_hyperparams(optimizer="adamw", lr=0.00001, es_min_delta=0.0, es_patience=0)

  • Train

gtf.train(num_epochs=5, val_interval=1, save_interval=1)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages