Pipeline based on SAC_Object_Detection project Journal: Evolving Systems DOI: 10.1007/s12530-025-09749-y Title: Scale-invariant object detection by adaptive convolution with unified global-local context
- efficientdet-d0.pth
- efficientdet-d1.pth
- efficientdet-d2.pth
- efficientdet-d3.pth
- efficientdet-d4.pth
- efficientdet-d5.pth
- efficientdet-d6.pth
- efficientdet-d7.pth
- EfficientDet-d1+SAC.pth
- EfficientDet-d2+SAC.pth
- EfficientDet_d1+SAC+Feature.pth
- EfficientDet_d2+SAC+Feature.pth
- EfficientDet_d1+SAC+Global+Feature.pth
- EfficientDet_d2+SAC+Global+Feature.pth
Supports
- Python 3.9
- Cuda 9.0, 11.0 (Other cuda version support is experimental)
cd installation
cat requirements_cuda9.0.txt | xargs -n 1 -L 1 pip install
- Load Dataset
gtf.set_train_dataset(root_dir, coco_dir, img_dir, set_dir, classes_list=[ ], batch_size=2, num_workers=3)
- Load Model
gtf.set_model(model_name="efficientdet-d3.pth", num_gpus=1, freeze_head=False);
- Set Hyper Parameters
gtf.set_hyperparams(optimizer="adamw", lr=0.00001, es_min_delta=0.0, es_patience=0)
- Train
gtf.train(num_epochs=5, val_interval=1, save_interval=1)