Skip to content

ashishkumar88/large-language-models-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

QMIX with LLM based exploration

This project is developed as a part of the DS-5983 Large language models course taught at Northeastern University in Spring, 2024. The project is based on the QMIX algorithm and the exploration is done using the large language model (LLM) based exploration. The project is implemented using the Python, torch, torchrl, huggingface and vicuna-7b fastchat library.

Install

pip install -r requirements.txt

Usage

To training the QMIX without lstm or attention, run the following command:

python <path/to/large-language-models-project>/llm_marl/multi_agent_qmix_discrete_env.py --config <path/to/large-language-models-project>/llm_marl/config/qmix/multi_agent_simple_spread.yaml

To training the QMIX with lstm, run the following command:

python <path/to/large-language-models-project>/llm_marl/multi_agent_qmix_discrete_env.py --config <path/to/large-language-models-project>/llm_marl/config/qmix/multi_agent_simple_spread_lstm.yaml

To training the QMIX with attention, run the following command:

python <path/to/large-language-models-project>/llm_marl/multi_agent_qmix_discrete_env.py --config <path/to/large-language-models-project>/llm_marl/config/qmix/multi_agent_simple_spread_attention.yaml

To training the QMIX with attention and astar oracle, run the following command:

python <path/to/large-language-models-project>/llm_marl/multi_agent_qmix_discrete_env.py --config <path/to/large-language-models-project>/llm_marl/config/qmix/multi_agent_simple_spread_astar.yaml

To training the QMIX with attention and vicuna-7b based exploration, run the following command:

python <path/to/large-language-models-project>/llm_marl/multi_agent_qmix_discrete_env.py --config <path/to/large-language-models-project>/llm_marl/config/qmix/multi_agent_simple_spread_llm.yaml

To training the QMIX with attention and fine-tuned vicuna-7b based exploration, run the following command:

python <path/to/large-language-models-project>/llm_marl/multi_agent_qmix_discrete_env.py --config <path/to/large-language-models-project>/llm_marl/config/qmix/multi_agent_simple_spread_fine_tune_llm.yaml

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages