-
Notifications
You must be signed in to change notification settings - Fork 722
Closed
Labels
questionFurther information is requestedFurther information is requested
Description
P.S. Don't attach files. Please, prefer add code snippets directly in the message body.
The source table is MySQL (Though I am not sure whether MySQL has timezone in datetime type [I think no timezone info]). I have 3 columns with data type datetime. When I try to extract tables using
query = """
select {prefix}{table}.*
from {prefix}{table}
""".format(prefix=prefix, table=table)
df = wr.db.read_sql_query(query, con=sql_engine)
The result pandas dataframe automatically changed the datetime value.
Pandas dataframe
transaction_date created_on modified_on
0 2017-10-04 00:00:00 2018-10-05 10:56:39.000000 2018-10-05 10:56:39.000000
1 2017-10-04 00:00:00 2018-10-05 10:56:39.000000 2018-10-05 10:56:39.000000
2 2017-10-04 00:00:00 2018-10-05 10:56:39.000000 2018-10-05 10:56:39.000000
3 2017-10-04 00:00:00 2018-10-05 10:56:39.000000 2018-10-05 10:56:39.000000
4 2017-10-04 00:00:00 2018-10-05 10:56:39.000000 2018-10-05 10:56:39.000000
... ... ... ...
33901 2020-11-05 06:20:25 2020-11-06 06:20:34.100835 2020-11-06 06:20:34.100877
33902 2020-11-05 06:20:34 2020-11-06 06:20:43.551528 2020-11-06 06:20:43.551551
33903 2020-11-05 06:34:58 2020-11-06 06:35:34.719571 2020-11-06 06:35:34.719592
33904 2020-11-05 06:35:34 2020-11-06 06:35:45.229119 2020-11-06 06:35:45.229141
33905 2020-11-05 06:35:45 2020-11-06 06:36:03.171246 2020-11-06 06:36:03.171269
while the source should be
transaction_date created_on modified_on
2017-10-04 08:00:00 2018-10-05 18:56:39 2018-10-05 18:56:39
2017-10-04 08:00:00 2018-10-05 18:56:39 2018-10-05 18:56:39
2017-10-04 08:00:00 2018-10-05 18:56:39 2018-10-05 18:56:39
2017-10-04 08:00:00 2018-10-05 18:56:39 2018-10-05 18:56:39
my timezone is UTC+8 (Hong Kong)
Metadata
Metadata
Assignees
Labels
questionFurther information is requestedFurther information is requested