-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Labels
Description
Describe the bug
on singleton training; i use the below code
from sagemaker.sklearn.estimator import SKLearn
estimator = SKLearn(
entry_point='train.py',
source_dir='../',
role=role,
metric_definitions=metric_definitions,
hyperparameters=hyperparameters,
instance_count=1,
instance_type='ml.m5.xlarge',
framework_version='0.23-1',
base_job_name='mlflow',
vpc_config=vpc_config,
environment={'MLFLOW_TRACKING_URI': 'https://xyz.com/mlflow-np',
'OTHER_ENV': 'something'}
)
estimator.fit({'train':train_path, 'test': test_path})
it works well but on using the same code for hyperparameter training it fails. I don't see the reason on failing.
estimator = SKLearn(
entry_point='train.py',
source_dir='../',
role=role,
instance_count=1,
instance_type='ml.m5.xlarge',
hyperparameters=hyperparameters,
metric_definitions=metric_definitions,
framework_version='0.23-1',
py_version='py3',
vpc_config=vpc_config,
environment={'MLFLOW_TRACKING_URI': 'https://xyz.com/mlflow-np',
'OTHER_ENV': 'something'}
)
hyperparameter_ranges = {
'n-estimators': IntegerParameter(50, 200),
'min-samples-leaf': IntegerParameter(1, 10)
}
objective_metric_name = 'median-AE'
objective_type = 'Minimize'
tuner = HyperparameterTuner(estimator,
objective_metric_name,
hyperparameter_ranges,
metric_definitions,
max_jobs=20,
max_parallel_jobs=10,
objective_type=objective_type,
base_tuning_job_name='mlflow')
tuner.fit({'train':train_path, 'test': test_path})
Also i am not able see the environment variables in debug.
Expected behavior
If I hardcode the values in the training it works fine.. this code is taken from https://github.com/aws-samples/amazon-sagemaker-mlflow-fargate/blob/main/lab/2_track_experiments_hpo.ipynb
System information
A description of your system. Please provide:
- SageMaker Python SDK version: sagemaker==2.39.0
- Python version: 3.7.6
- CPU or GPU: 4
- Custom Docker image (Y/N): N
lorenzwalthert