Skip to content

Sagemaker with Dockerfile #4071

@celsofranssa

Description

@celsofranssa

I am trying to automatize AWS Sagemaker as a base for a large series of deep-learning experiments.

My current approach uses the Estimators as the code snippet shows:

import hydra
from omegaconf import omegaconf
from sagemaker.pytorch.estimator import PyTorch


@hydra.main(config_path="setting/", config_name="setting.yaml", version_base=None)
def run_on_sagemaker(params):
    role = "<your sagemaker arn role>"
    estimator = PyTorch(
        entry_point=params.sagemaker.entry_point,
        role=role,
        framework_version=params.sagemaker.framework_version,
        py_version=params.sagemaker.py_version,
        instance_type=params.sagemaker.instance_type,
        instance_count=params.sagemaker.instance_count,
        volume_size=params.sagemaker.volume_size,
        hyperparameters=omegaconf.OmegaConf.to_container(params, resolve=True, throw_on_missing=True)
    )
    estimator.fit()


if __name__ == '__main__':
    run_on_sagemaker()

However, when building the indicated Pytorch docker image, it seems that Sagemaker is not able to install all the dependencies correctly.

Therefore, would it be possible to explicitly declare (through a Dockerfile, for instance) how to create the Docker image?

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions