-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Labels
Description
I am trying to automatize AWS Sagemaker as a base for a large series of deep-learning experiments.
My current approach uses the Estimators as the code snippet shows:
import hydra
from omegaconf import omegaconf
from sagemaker.pytorch.estimator import PyTorch
@hydra.main(config_path="setting/", config_name="setting.yaml", version_base=None)
def run_on_sagemaker(params):
role = "<your sagemaker arn role>"
estimator = PyTorch(
entry_point=params.sagemaker.entry_point,
role=role,
framework_version=params.sagemaker.framework_version,
py_version=params.sagemaker.py_version,
instance_type=params.sagemaker.instance_type,
instance_count=params.sagemaker.instance_count,
volume_size=params.sagemaker.volume_size,
hyperparameters=omegaconf.OmegaConf.to_container(params, resolve=True, throw_on_missing=True)
)
estimator.fit()
if __name__ == '__main__':
run_on_sagemaker()However, when building the indicated Pytorch docker image, it seems that Sagemaker is not able to install all the dependencies correctly.
Therefore, would it be possible to explicitly declare (through a Dockerfile, for instance) how to create the Docker image?
celsofranssa