Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions src/sagemaker/pytorch/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,8 @@ class PyTorch(Framework):
"""Handle end-to-end training and deployment of custom PyTorch code."""

_framework_name = "pytorch"
LAUNCH_TORCH_DDP_ENV_NAME = "sagemaker_torch_ddp_enabled"
TORCH_DDP_NUM_PROCESSES_PER_HOST = "sagemaker_torch_dpp_num_of_processes_per_host"

def __init__(
self,
Expand Down Expand Up @@ -114,7 +116,14 @@ def __init__(
"enabled": True
}
}
To enable vanilla Torch DDP:

.. code:: python
{
"torch_ddp": {
"enabled": True
}
}
To enable MPI:

.. code:: python
Expand Down Expand Up @@ -186,6 +195,29 @@ def __init__(
)
self.distribution = distribution or {}

def _pytorch_distribution_configuration(self):
"""Returns a dict of distribution config

Args:
None

Returns:
dict containing torch ddp config
"""
distribution_config = {}
if "torch_ddp" in self.distribution:
torch_ddp_dict = self.distribution["torch_ddp"]
torch_ddp_enabled = self.distribution.get("torch_ddp").get("enabled", False)
distribution_config[self.LAUNCH_TORCH_DDP_ENV_NAME] = torch_ddp_enabled

if torch_ddp_dict.get("processes_per_host"):
distribution_config[self.TORCH_DDP_NUM_PROCESSES_PER_HOST] = torch_ddp_dict.get(
"processes_per_host"
)
else:
distribution_config = self._distribution_configuration(distribution=self.distribution)
return distribution_config

def hyperparameters(self):
"""Return hyperparameters used by your custom PyTorch code during model training."""
hyperparameters = super(PyTorch, self).hyperparameters()
Expand Down
19 changes: 19 additions & 0 deletions tests/unit/test_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,8 @@
"TrialComponentDisplayName": "tc",
}

DISTRIBUTION_TORCH_DDP_ENABLED = {"torch_ddp": {"enabled": True, "processes_per_host": 2}}


@pytest.fixture(name="sagemaker_session")
def fixture_sagemaker_session():
Expand Down Expand Up @@ -691,3 +693,20 @@ def test_custom_image_estimator_deploy(
pytorch.fit(inputs="s3://mybucket/train", job_name="new_name")
model = pytorch.create_model(image_uri=custom_image)
assert model.image_uri == custom_image


def test_torch_ddp_distribution_configuration(
sagemaker_session, pytorch_training_version, pytorch_training_py_version
):
pytorch = _pytorch_estimator(
sagemaker_session,
framework_version=pytorch_training_version,
py_version=pytorch_training_py_version,
distribution=DISTRIBUTION_TORCH_DDP_ENABLED,
)
actual_torch_ddp = pytorch._pytorch_distribution_configuration()
expected_torch_ddp = {
"sagemaker_torch_ddp_enabled": True,
"sagemaker_torch_dpp_num_of_processes_per_host": 2,
}
assert actual_torch_ddp == expected_torch_ddp